Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;-1) và mặt phẳng (P) có phương trình x + y + 2 z - 13 = 0 . Mặt cầu (S) đi qua A, tiếp xúc với mặt phẳng (P) và có bán kính nhỏ nhất. Điểm I (a;b;c) là tâm của mặt cầu (S), tính giá trị của biểu thức T = a 2 + 2 b 2 + 3 c 2
A. T = 25
B. T = 30
C. T = 20
D. T = 35
Trong không gian với hệ tọa độ Oxyz, xét mặt cầu (S) đi qua hai điểm A(1;6;2), B(3;0;0) và có tâm thuộc mặt phẳng (P):x - y + 2 =0. Bán kính mặt cầu (S) có giá trị nhỏ nhất là:
A. 534 4
B. 426 6
C. 530 4
D. 218 6
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) trong đó a > 0, b > 0, c > 0. Mặt phẳng (ABC) đi qua điểm I(1;2;3) sao cho thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Chọn đẳng thức không đúng khi nói về a, b, c?
A. a + b + c = 12
B. a 2 + b = c + 6
C. a + b + c = 18
D. a + b - c = 0
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;0;-1) và mặt phẳng P : x + y - z - 3 = 0 . Gọi (S) là mặt cầu có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho diện tích tam giác OIA bằng 17 2 . Tính bán kính R của mặt cầu (S)
A. R = 3
B. R = 9
C. R = 1
D. R = 5
Trong không gian với hệ tọa độ Oxyz, cho điểm A (1;0;-1) và mặt phẳng P : x + y - z - 3 = 0 . Gọi (S) là mặt cầu có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho diện tích tam giác OIA bằng 17 2 . Tính bán kính R của mặt cầu (S).
A. R = 3
B. R = 9
C. R = 1
D. R = 5
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu S : x 2 + y 2 + z 2 + a x + b y + c z + d = 0 có bán kính R = 19 , đường thẳng d : x = 5 + t y = - 2 - 4 t z = - 1 - 4 t và mặt phẳng ( P ) : 3 x - y - 3 z - 1 = 0 . Trong các số {a,b,c,d} theo thứ tự dưới đây, số nào thỏa mãn a + b + c + d = 43, đồng thời tâm I của (S) thuộc đường thẳng d và (S) tiếp xúc với (P)?
A. {-6;-12;-14;75}
B. {6;10;20;7}
C. {-10;4;2;47}
D. {3;5;6;29}
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A B (3; 2;6), (0;1;0) - và mặt cầu (S): . Mặt phẳng (P): ax + by + cz – 2 = 0 đi qua A, B và cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính T = a + b + c
A. T = 5
B. T = 3
C. T = 2
D. T = 4
Trong không gian với hệ tọa độ Oxyz lấy các điểm A(a;0;0), B(0;b;0), C(0;0;c) trong đó a > 0 , b > 0 , c > 0 và 1 a + 1 b + 1 c = 2 . Khi a, b, c thay đổi, mặt phẳng (ABC) luôn đi qua một điểm cố định có tọa độ
A. (1;1;1)
B. (2;2;2)
C. 1 2 ; 1 2 ; 1 2
D. - 1 2 ; - 1 2 ; - 1 2
Trong không gian với hệ tọa độ Oxyz, cho điểm A 1 ; 0 ; - 1 và mặt phẳng P : x + y - z - 3 = 0 . Gọi (S) là mặt cầu có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho diện tích tam giác OIA bằng 17 2 . Tính bán kính R của mặt cầu (S).
A. R = 3
B. R = 9
C. R = 1
D. R = 5