Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) trong đó a > 0, b > 0, c > 0. Mặt phẳng (ABC) đi qua điểm I(1;2;3) sao cho thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Chọn đẳng thức không đúng khi nói về a, b, c?

A. a + b + c = 12

B.  a 2 + b = c + 6

C. a + b + c = 18

D. a + b - c = 0

Cao Minh Tâm
15 tháng 7 2017 lúc 12:36

Đáp án A

Phương trình mặt phẳng A B C : x a + y b + z c = 1  

Vì I ∈ A B C ⇔ 1 a + 2 b + 3 c ≥ 3 6 a b c 3 ⇔ a b c ≥ 162  

Thể tích khối tứ diện OABC được tính là V = O A . O B . O C 6 = a b c 6 ≥ 162 6 = 27  

Dấu “=” xảy ra khi 1 a = 2 b = 3 c = 1 3 ⇒ a = 3 b = 6 c = 9  

Kiểm tra thấy phương án A không đúng


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết