Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A ( a ; 0 ; 0 ) , B ( 0 ; b ; 0 ) , C ( 0 ; 0 ; c ) , trong đó a > 0 , b > 0 , c > 0 và 3 a + 1 b + 3 c = 5 . Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S) có phương trình là ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 3 ) 2 = 304 25 , khi đó thể tích của khối tứ diện OABC nằm trong khoảng nào?
A . ( 0 ; 1 2 ) .
B. (0;1).
C. (1;3).
D. (4;5).
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với a,b,c>0. Biết rằng (ABC) đi qua điểm M 1 7 ; 2 7 ; 3 7 và tiếp xúc với mặt cầu (S): x - 1 2 + ( y - 2 ) 2 + z - 3 2 = 72 7 . Tính 1 a 2 + 1 b 2 + 1 c 2
A. 7 2
B. 1 7
C. 14
D. 7
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) trong đó a > 0, b > 0, c > 0. Mặt phẳng (ABC) đi qua điểm I(1;2;3) sao cho thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Chọn đẳng thức không đúng khi nói về a, b, c?
A. a + b + c = 12
B. a 2 + b = c + 6
C. a + b + c = 18
D. a + b - c = 0
Trong không gian Oxyz cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 27 . Gọi ( α ) là mặt phẳng đi qua hai điểm A(0;0;-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S), đáy là (C) có thể tích lớn nhất. Biết mặt phẳng ( α ) có phương trình dạng ax+by-z+c= 0, khi đó a-b+c bằng:
A. -4.
B. 8
C. 0
D. 2
Trong không gian Oxyz, cho các điểm A(a;0;0),B(0;b;0),C(0;0;c) di động trên các trục Ox,Oy,Oz sao cho 2a+b-c-6=0 và hai điểm M(2;-3;5),N(-1;0;-1). Xét các mặt cầu (S) ngoại tiếp tứ diện OABC có tâm I. Khi | 2 IM → + IN → | đạt giá trị nhỏ nhất thì mặt cầu (S) có diện tích bằng
A. 14π.
B. 64π.
C. 56π.
D. 16π.
Trong không gian với hệ toạ độ Oxyz, xét ba điểm A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c là các số thực thay đổi thoả mãn 1 a - 2 b + 2 c = 1 . Biết rằng mặt cầu (S): ( x - 2 ) 2 + y 2 + ( z - 4 ) 2 = 25 cắt mặt phẳng (ABC) theo giao tuyến là một đường tròn có bán kính bằng 4. Giá trị của biểu thức a+b+c bằng
A. 5.
B. 1.
C. 2.
D. 4.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c với a , b , c > 0 . Biết rằng (ABC) đi qua điểm M 1 7 ; 2 7 ; 3 7 và tiếp xúc với mặt cầu S : x - 1 2 + y - 2 2 + z - 3 2 = 72 7 . Tính 1 a 2 + 1 b 2 + 1 c 2
A. 14
B. 1 7
C. 7
D. 7 2
Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(-2;0;0),B(0;-2;0),C(0;0;-2). Các điểm M, N, P lần lượt trên ba cạnh OA, OB, OC sao cho O A O M + O B O N + O C O P = 4 và khối tứ diện OMNP có thể tích nhỏ nhất. Mặt phẳng ( α ) :ax+by+cz-1=0 đi qua ba điểm M, N, P. Tính S=a+b+c.
A. S = - 9 2
B. S = -4
C. S = -2
D. S = -3
Trong không gian Oxyz, cho điểm A(a;0;0), B(0;b;0), C(0;0;c) sao cho a + b = 1 Phương trình một mặt cầu (S) có diện tích nhỏ nhất ngoại tiếp tứ diện OABC là
A. x + 1 4 2 + y + 1 4 2 + z + 1 2 2 = 3 8
B. x - 1 2 2 + y + 1 2 2 + z - 1 2 2 = 3 4
C. x - 1 2 2 + y - 1 2 2 + z - 1 2 = 3 4
D. x - 1 4 2 + y + 1 4 2 + z - 1 2 2 = 3 8