Chọn đáp án A
Mặt cầu (S) tâm A, tiếp xúc với (P) nên có bán kính là
Chọn đáp án A
Mặt cầu (S) tâm A, tiếp xúc với (P) nên có bán kính là
Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;1;3) và đường thẳng d có phương trình x - 1 2 = y - 2 - 1 = z z . Mặt phẳng chứa A và d. Viết phương trình mặt cầu tâm O tiếp xúc với mặt phẳng (P).
A. x 2 + y 2 + z 2 = 12 5 .
B. x 2 + y 2 + z 2 = 3 .
C. x 2 + y 2 + z 2 = 6 .
D. x 2 + y 2 + z 2 = 24 5 .
Trong không gian với hệ tọa độ Oxyz, cho điểm
A 1 ; 3 ; - 2 và mặt phẳng (P) có phương trình
( P ) : 2 x - y + 2 z - 1 = 0 . Viết phương trình mặt cầu (S)
có tâm A và tiếp xúc với mặt phẳng (P). Tọa độ tiếp
điểm là:
A. H 7 3 ; 7 3 ; - 2 3
B. H 1 3 ; 1 3 ; - 2 3
C. H 7 3 ; - 7 3 ; 2 3
D. H 7 3 ; 7 3 ; 2 3
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 1 = y + 2 1 = z 1 và mặt phẳng P : 2 x + y - 2 z + 2 = 0 . Gọi (S) là mặt cầu có tâm nằm trên d, tiếp xúc với mặt phẳng (P) và đi qua điểm A(2;-1;0). Biết tâm của mặt cầu có cao độ không nhỏ hơn 1, phương trình mặt cầu (S) là
A. x - 2 2 + y - 1 2 + z - 1 2 = 1
B. x + 2 2 + y + 1 2 + z - 1 2 = 1
C. x - 2 2 + y - 1 2 + z + 1 2 = 1
D. x - 2 2 + y + 1 2 + z - 1 2 = 1
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 1 ) 2 + y 2 + ( z - 2 ) 2 = 9 . Mặt phẳng tiếp xúc với mặt cầu (S) tại điểm A ( 1 ; 3 ; 2 ) có phương trình là
A . x + y - 4 = 0
B . y - 3 = 0
C . 3 y - 1 = 0
D . x - 1 = 0
Trong không gian với hệ tọa độ Oxyz , cho điểm A 2 ; 1 ; 1 và mặt phẳng P : 2 x − y + 2 z + 1 = 0 . Mặt cầu tâm A tiếp xúc với mặt phẳng (P) có phương trình
A. x − 2 2 + y − 1 2 + z − 1 2 = 4
B. x − 2 2 + y − 1 2 + z − 1 2 = 9
C. x − 2 2 + y − 1 2 + z − 1 2 = 3
D. x − 2 2 + y − 1 2 + z − 1 2 = 5
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( α ) : bc . x + ac . y + ab . z - abc = 0 với a, b, c là các số khác 0 thỏa mãn 1 a + 2 b + 3 c = 7 . Gọi A, B, C lần lượt là giao điểm của α với các trục tọa độ Ox, Oy, Oz. Biết mặt phẳng α tiếp xúc với mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 72 7 . Thể tích khối OABC với O là gốc tọa độ bằng
A. 2 9
B. 3 4
C. 1 8
D. 4 3
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x 2 = y - 3 1 = z - 2 1 và hai mặt phẳng
P x - 2 y + 2 z = 0 ; Q : x - 2 y + 3 z - 5 = 0 . Mặt cầu (S) có tâm I là giao điểm của đường thẳng d và mặt phẳng (P). Mặt phẳng (Q) tiếp xúc với mặt cầu (S). Viết phương trình của mặt cầu (S).
A. S : x + 2 2 + y + 4 2 + z + 3 2 = 1
B. S : x - 2 2 + y - 4 2 + z - 3 2 = 6
C. S : x - 2 2 + y - 4 2 + z - 3 2 = 2 7
D. S : x - 2 2 + y + 4 2 + z + 4 2 = 8
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 2 2 = y - 1 = z 4 và mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 1 ) 2 = 2. Hai mặt phẳng (P) và (Q) chứa d và tiếp xúc với (S). Gọi M,N là tiếp điểm. Tính độ dài đoạn thẳng MN.
A. 2 2
B. 4 3
C. 6
D. 4
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng ( P ) : x - y + 2 z - 6 = 0 và điểm M(1;-1;2). Phương trình mặt cầu tâm nằm trên trục Ox và tiếp xúc với mặt phẳng (P) tại điểm M là
A. x 2 + y 2 + z 2 + 2 x - 8 y + 6 z + 12 = 0
B. x 2 + y 2 + z 2 = 6
C. x 2 + y 2 + z 2 = 16
D. x 2 + y 2 + z 2 + 2 x - 8 y + 6 z + 12 = 36