Trong không gian Oxyz, cho ba điểm A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c#0. Biết rằng mặt phẳng (ABC) đi qua điểm M 2 3 ; 4 3 4 3 và tiếp xúc với mặt cầu S : x - 1 2 + y - 2 2 + z - 2 2 = 1 . Thể tích khối tứ diện OABC bằng
A. 4
B. 6
C. 9
D. 12
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với a,b,c>0. Biết rằng (ABC) đi qua điểm M 1 7 ; 2 7 ; 3 7 và tiếp xúc với mặt cầu (S): x - 1 2 + ( y - 2 ) 2 + z - 3 2 = 72 7 . Tính 1 a 2 + 1 b 2 + 1 c 2
A. 7 2
B. 1 7
C. 14
D. 7
Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A ( a ; 0 ; 0 ) , B ( 0 ; b ; 0 ) , C ( 0 ; 0 ; c ) , trong đó a > 0 , b > 0 , c > 0 và 3 a + 1 b + 3 c = 5 . Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S) có phương trình là ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 3 ) 2 = 304 25 , khi đó thể tích của khối tứ diện OABC nằm trong khoảng nào?
A . ( 0 ; 1 2 ) .
B. (0;1).
C. (1;3).
D. (4;5).
Trong hệ tục toạ độ không gian Oxyz, cho A(1;0;0), B(0;b;0), C(0;0;c), biết b,c>0, phương trình mặt phẳng (P): y-z+1= 0. Tính M=b+c biết (ABC) ⊥ (P),d(O;(ABC))=1/3
A. 2
B. 1/2
C. 5/2
D. 1
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c với a , b , c > 0 . Biết rằng (ABC) đi qua điểm M 1 7 ; 2 7 ; 3 7 và tiếp xúc với mặt cầu S : x - 1 2 + y - 2 2 + z - 3 2 = 72 7 . Tính 1 a 2 + 1 b 2 + 1 c 2
A. 14
B. 1 7
C. 7
D. 7 2
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) trong đó a > 0, b > 0, c > 0. Mặt phẳng (ABC) đi qua điểm I(1;2;3) sao cho thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Chọn đẳng thức không đúng khi nói về a, b, c?
A. a + b + c = 12
B. a 2 + b = c + 6
C. a + b + c = 18
D. a + b - c = 0
Trong không gian với hệ toạ độ Oxyz, xét ba điểm A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c là các số thực thay đổi thoả mãn 1 a - 2 b + 2 c = 1 . Biết rằng mặt cầu (S): ( x - 2 ) 2 + y 2 + ( z - 4 ) 2 = 25 cắt mặt phẳng (ABC) theo giao tuyến là một đường tròn có bán kính bằng 4. Giá trị của biểu thức a+b+c bằng
A. 5.
B. 1.
C. 2.
D. 4.
Trong không gian Oxyz cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 27 . Gọi ( α ) là mặt phẳng đi qua hai điểm A(0;0;-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S), đáy là (C) có thể tích lớn nhất. Biết mặt phẳng ( α ) có phương trình dạng ax+by-z+c= 0, khi đó a-b+c bằng:
A. -4.
B. 8
C. 0
D. 2
Trong không gian với hệ tọa độ Oxyz lấy các điểm A(a;0;0), B(0;b;0), C(0;0;c) trong đó a > 0 , b > 0 , c > 0 và 1 a + 1 b + 1 c = 2 . Khi a, b, c thay đổi, mặt phẳng (ABC) luôn đi qua một điểm cố định có tọa độ
A. (1;1;1)
B. (2;2;2)
C. 1 2 ; 1 2 ; 1 2
D. - 1 2 ; - 1 2 ; - 1 2