Gọi V là thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường y = x ,y=0 và x=4 quanh trục Ox. Đường thẳng x=a (0<a<4) cắt đồ thị hàm số y = x tại M (hình vẽ bên). Gọi V 1 là thể tích khối tròn xoay tạo thành khi quay tam giác OMH quanh trục Ox. Biết rằng V=2 V 1 . Khi đó
A. a = 2 2
B. a = 5 2
C. a = 2
D. a = 3
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc đường thẳng Δ : x 1 = x + 3 1 = z 2 . Biết rằng mặt cầu (S) có bán kính bằng 2 2 và cắt mặt phẳng (Oxz) theo một đường tròn có bán kính bằng 2. Tìm tọa độ tâm I
A. I(1;-2;2), I(5;2;10)
B. I(1;-2;2), I(0;-3;0)
C. I(5;2;10), I(0;-3;0)
D. I(1;-2;2), I(-1;2;-2)
Trong không gian, cho hình (H) gồm mặt cầu S I ; R và đường thẳng ∆ đi qua tâm I của mặt cầu (S). Số mặt phẳng đối xứng của hình (H) là:
A. 2
B. 1
C. Vô số
D. 3
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 2 1 = y + 3 2 = z - 1 3 . Viết phương trình đường thẳng d’ là hình chiếu vuông góc của d lên mặt phẳng (Oyz).
A. d ' : x = 0 y = 3 + 2 t z = 0
B. d ' : x = 2 + t y = - 3 + 2 t z = 0
C. d ' : x = 0 y = - 3 + 2 t z = 1 + 3 t
D. d ' : x = t y = 2 t z = 0
cho hình vuông ABCD cố định, độ dài cạnh là a. E là điểm di chuyển trên cạnh CD (E khác D ), đường thẳng AE cắt đường thẳng BC tại F, đường thẳng vuông góc với AE tại A cắt đường thẳng CD tạ K.
1) chứng minh hai tam giác ABE và ADK bằng nhau. Suy ra tam giác AFK vuông cân.
2) gọi I là trung điểm của FK. chứng minh I là đường tròn đi qua A,C,F,K và I di chuyển trên đường thẳng cố định khi E di động trên CD
Trong không gian Oxyz cho đường thẳng d : x - 1 = y - 2 1 = z - 3 2 và hai mặt phẳng α : x + 2 y + 2 z + 1 = 0 , β : 2 x - y - 2 z + 7 = 0 . Mặt cầu (S) có tâm nằm trên đường thẳng d và (S) tiếp xúc với hai mặt phẳng α và β có bán kính là:
A. 2 ∨ 12
B. 4 ∨ 144
C. 2 ∨ 2 3
D. 2 ∨ 2
Trong không gian Oxyz cho đường thẳng d : x - 1 = y - 2 1 = z - 3 2 và hai mặt phẳng α : x + 2 y + 2 z + 1 = 0 , β : 2 x - y - 2 z + 7 = 0 . Mặt cầu (S) có tâm nằm trên đường thẳng d và (S) tiếp xúc với hai mặt phẳng α và β có bán kính là:
A. 2 ∨ 12
B. 4 ∨ 144
C. 2 ∨ 2 3
D. 2 ∨ 2
câu 1 : Cho đường tròn (O;R) và một điểm M nằm ngoài đường tròn sao cho OM=2R . Đường thẳng d đi qua M và tiếp xúc với đường tròn (O;R) tại A . Gọi N là giao điểm của đoạn thẳng MO với đường tròn (O;R)
1) Tính đọ dài đoạn thẳng An theo R . Tính số đo góc NAM
2) Kẻ hai đường kính AD và CD khac nhau của đường tròn (O;R) . Các đường thẳng BC,BD cắt đường tahnwgr d lần lượt tại P,Q .
a) c/m tứ giác PQDC là tứ giác nội tiếp
b) c/m 3BQ - 2AQ > 4R
Trong không gian hệ tọa độ Oxyz, cho mặt phẳng (P):2x+2y-z+3=0 và đường thẳng (d): x - 1 1 = y + 3 2 = z 2 . Gọi A là giao điểm của (d) và (P); gọi M là điểm thuộc (d) thỏa mãn điều kiện MA = 2. Tính khoảng cách từ M đến mặt phẳng (P)?
A. 4 9
B. 8 3
C. 8 9
D. 2 9