Trong các số phức z thỏa mãn điều kiện |z-2-4i|=|z-2i|. Số phức z có môđun nhỏ nhất là?
A. z = -2+2i
B. z = 2-2i
C. z = 2+2i
D. z = -2-2i
Số phức z = a + b i a , b ∈ ℝ là số phức có môđun nhỏ nhất trong tất cả các số phức thỏa điều kiện z + 3 i = z + 2 − i , khi đó giá trị z . z ¯ bằng
A. 1 5
B. 5
C. 3
D. 3 25
Trong các số phức thỏa mãn điều kiện z − 2 − 4 i = z − 2 i . Số phức z có môđun nhỏ nhất là
A. z = 2 - 2i
B. z = -1 + 5i
C. z = 2 + 2i
D. z = 1 + 2i
Cho a là số thực và z là số phức thỏa mãn z 2 − 2 z + a 2 − 2 a + 5 = 0 . Biết a = a 0 là giá trị để số phức z có môđun nhỏ nhất. Khi đó a 0 gần giá trị nào nhất trong các giá trị sau?
A. -3
B. -1
C. 4
D. 2
Trong các số phức z thỏa mãn điều kiện z − 2 − 4 i = z − 2 i . Số phức z có môđun nhỏ nhất có tổng phần thực và phần ảo là
A. 0.
B. 4.
C. 3.
D. 2.
Cho số phức z thỏa mãn ( 2 − 3 i ) z + ( 4 + i ) z ¯ + ( 1 + 3 i ) 2 = 0 . Gọi a, b lần lượt là phần thực và phần ảo của số phức z. Khi đó 2 a - 3 b bằng
A. 1
B. 4
C. 11
D. -19
Tìm số phức z có môđun nhỏ nhất thỏa mãn điều kiện z 4 + 5 z 2 + 4 = 0
A. 3 5 - 6 5 i
B. 6 5 - 3 5 i
C. 9 5
D. 3 5 5
Cho số phức z thỏa mãn điều kiện | z - 1 + 2 i | = 5 và w=z+1+i có môđun lớn nhất. Số phức z có môđun bằng
A. 2 5
B. 3 2
C. 6
D. 5 2
Cho số phức z thỏa mãn điều kiện z + 1 1 - z ¯ là số thực. Khi đó môđun của z có giá trị nhỏ nhất bằng
A. 1 2
B. 1
C. 1 4
D. 1 2