a: \(log_2\dfrac{1}{16}=log_22^{-4}=-4\)
b: \(log_3243=log_33^5=5\)
c: \(9^{log_37}=7^{log_39}=7^2=49\)
c: \(\left(\dfrac{1}{81}\right)^{log_32}=\left(3^{-4}\right)^{log_32}=2^{log_33^{-4}}=2^{-4}=\dfrac{1}{16}\)
\(log_2\dfrac{1}{16}=-log_22^4=-4\)
\(log_3243=log_33^5=5\)
\(9^{log_37}=3^{2log_37}=3^{log_349}=49\)
\(\left(\dfrac{1}{81}\right)^{log_32}=3^{-4.log_32}=3^{log_32^{-4}}=2^{-4}=\dfrac{1}{16}\)