\(A=2+2^2+2^3+...+2^{100}\)
\(=>2.A=2.2+2^2.2+2^3.2+...+2^{100}.2\)
\(=>2.A=2^2+2^3+2^4+...+2^{101}\)
\(=>2.A-A=A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(=>A=2^{101}-2\)
Vậy A=2101-2
2a=2^2+2^3+...+2^101
=>a=2^101-2