lim x → − 1 + x 2 + 4 x + 3 x 3 + x 2 = lim x → − 1 + x + 1 x + 3 x 2 x + 1 = lim x → − 1 + x + 1 x + 3 x 2 = 0 1 = 0.
Chọn đáp án D
lim x → − 1 + x 2 + 4 x + 3 x 3 + x 2 = lim x → − 1 + x + 1 x + 3 x 2 x + 1 = lim x → − 1 + x + 1 x + 3 x 2 = 0 1 = 0.
Chọn đáp án D
Cho f(x)=1/3(m-1)x³-mx²+(m+2)x-5. Tìm m để a)f'(x) lớn hơn hoặc bằng 0 với mọi x b)f'(x) nhỏ hơn hoặc bằng 0 với mọi x c)f'(x)=0 có 2 nghiệm cùng âm d)f'(x)=0 có nghiệm thỏa mãn x1+2x2=1
tính đạo hàm
a) \(y=\dfrac{\left(x-2\right)^2}{\left(2x-3\right)\left(x-1\right)}\)
b) \(y=x+3+\dfrac{4}{x+3}\) giải phương trình y'=0
c) \(y=\dfrac{\left(5x-1\right)\left(x+1\right)}{x+2}\) tính y'(-1)
d) \(y=x-2+\dfrac{9}{x-2}\) giải phương trình y'=0
Cho 1/3(m-1)x³-(m-1)x²+(m-3)x+2. Tìm m để a)y'=0 có 2 nghiệm phân biệt cùng dương b)y'=0 có 2 nghiệm phân biệt trái dấu c)y'=0 có 2 nghiệm phân biệt|x1-x2|= căn 2 d)y' lớn hơn hoặc bằng 0 với mọi x e)y' nhỏ hơn hoặc bằng 0 với mọi x
Cho 1/3(m-1)x³-(m-1)x²+(m-3)x+2. Tìm m để a)y'=0 có 2 nghiệm phân biệt cùng dương b)y'=0 có 2 nghiệm phân biệt trái dấu c)y'=0 có 2 nghiệm phân biệt|x1-x2|= căn 2 d)y' lớn hơn hoặc bằng 0 với mọi x e)y' nhỏ hơn hoặc bằng 0 với mọi x
Cho y=1/3(m-1)x³-(m-1)x²+(m+3)x-2. Tìm m để a)y'=0 có 2 nghiệm phân biệt cùng dấu b)y'=0 có 2 nghiệm thoả mãn x1²+x2²=4
Chứng minh rằng các phương trình sau luôn có nghiệm: a)x^5 - 3x+3=0 b)x^5+x-1=0 c)x^4+x^3-3x^2+x+1=0
tính đạo hàm
a) \(y=\sqrt{\left(x+2\right)\left(x+3\right)}\)
b) \(y=\sqrt{\dfrac{2x+1}{x-3}}\)
c) \(y=\left(x+1\right)\sqrt{x+3}\) tính y'(1)
d) \(y=\dfrac{x-1}{x^2+1}\)
giải phương trình
a) \(5^x=4\)
b) \(5^{2-x}=8\)
c) \(\left(\dfrac{1}{3}\right)^{4+x}=243\)
d) \(\left(\dfrac{2}{3}\right)^x=\dfrac{3}{2}\)
a. CMR: Với mọi tham số m phương trình \(\left(1-m^2\right)x^3-6x=1\) luôn có nghiệm
b. CMR PT \(x^3+2x=4+3\sqrt{3-2x}\) có đúng 1 nghiệm
c. CMR PT \(\left(m-1\right)\left(x-2\right)^2\left(x-3\right)^3+2x-5=0\) có nghiệm với mọi m
cho hàm số f(x)=\(x^2-4x+3\)
tìm gtri tham số m để \(\left|f\left(\left|x\right|\right)-1\right|=m\) có 8 nghiệm phân biệt
đáp án:
A. \(m< 1\)
B.\(0\le x\le2\)
C.1<x<2
D.0<x<1