\(\lim\limits_{x\rightarrow-\infty}\sqrt{3x^2-5x}\)
\(=\lim\limits_{x\rightarrow-\infty}\sqrt{x^2\left(3-\dfrac{5}{x}\right)}\)
\(=\lim\limits_{x\rightarrow-\infty}-x\cdot\sqrt{3-\dfrac{5}{x}}\)
\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}-x=+\infty\\\lim\limits_{x\rightarrow-\infty}\sqrt{3-\dfrac{5}{x}}=\sqrt{3}>0\end{matrix}\right.\)