Tính tích phân I = ∫ 0 2 3 x + x - 4 d x ta được kết quả I = a + b ln c ( với a, b, c là các số nguyên dương). Khi đó giá trị của biểu thức T = a 3 + 3 b 2 + 2 c bằng:
A. 55
B. 36
C. 38
D. 73
Tính tích phân I = ∫ - 2 0 x 2 - x - 2 x - 1 d x ta được kết quả I = a + bln2 + cln3 ( với a, b, c là các số nguyên). Khi đó giá trị của biểu thức T = 2 a 3 + 3 b - 4 c là:
A. T = -20.
B. T = 3.
C. T = 22.
D. T = 6.
Tính giá trị của biểu thức sau: \(log^2_{\dfrac{1}{a}}a^2+log_{a^2}a^{\dfrac{1}{2}}\) (1≠a>0)
A. \(\dfrac{17}{4}\)
B. \(\dfrac{13}{4}\)
C. \(-\dfrac{11}{4}\)
D. -\(\dfrac{15}{4}\)
Rút gọn biểu thức A = a 4 log a 2 3 với 0 < a ≠ 1 ta được kết quả là
A. 9
B. 3 4
C. 3 8
D. 6
Tính giá trị biểu thức K = log a a a với 0 < a ≠ 1
A. K = 4 3
B. K = 3 8
C. K = 4 3
D. K = 1
Tính tích phân I = ∫ 0 1 x x - a d x , a > 0 ta được kết quả I=f(a). Khi đó tổng f 8 + f 1 2 có giá trị bằng:
A. 24 91 .
B. 91 24 .
C. 17 2 .
D. 2 17 .
Tính giá trị của biểu thức S = log 1 2 + log 2 3 = log 3 4 + . . . + log 99 100
A. 1 10
B. - 1 10
C. 2
D. -2
Tính giá trị của biểu thức P = log ( tan 1 0 ) + log ( tan 2 0 ) + log ( tan 3 0 ) + . . . + log ( tan 89 0 ) .
Cho f x = a ln x + x 2 + 1 + b sin x + 6 với a , b ∈ ℝ . Biết rằng f(log(log e)) = 2. Tính giá trị của f(log(ln10)).
A. 10
B. 2
C. 4
D. 8