Đáp án là C
y ' = 6 cos 3 x − 2 sin 2 x .
Đáp án là C
y ' = 6 cos 3 x − 2 sin 2 x .
Giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số y = sin x + 2 cos x + 1 sin x + cos x + 2 là
A. m = - 1 2 ; M = 1
B. m = 1 ; M = 2
C. m = - 2 ; M = 1
D. m = - ; M = 2
Cho các mệnh đề sau đây:
(1) Hàm số f ( x ) = log 2 2 x - log 2 x 4 + 4 có tập xác định D = [ 0 ; + ∞ )
(2) Hàm số y = log a x có tiệm cận ngang
(3) Hàm số y = log a x ; 0 < a < 1 và Hàm số y = log a x , a > 1 đều đơn điệu trên tập xác định của nó
(4) Bất phương trình: log 1 2 5 - 2 x 2 - 1 ≤ 0 có 1 nghiệm nguyên thỏa mãn.
(5) Đạo hàm của hàm số y = ln 1 - cos x là sin x 1 - cos x 2
Hỏi có bao nhiêu mệnh đề đúng:
A. 0
B. 2
C. 3
D.1
Tìm đạo hàm y' của hàm số y = sin x + cos x
A. y' = 2cosx
B. y' = 2sinx
C. y' = sinx - cosx
D. y' = cosx - sinx
Cho hàm số y = s i n x + c o s x + 2 . Mênh đề nào dưới đây đúng?
A. Hàm số đạt cực đại tại các điểm
x = − 3 π 4 + k 2 π , k ∈ ℤ
B. Hàm số đạt cực tiểu tại các điểm
x = − π 4 + k 2 π , k ∈ ℤ
C. Hàm số đạt cực đại tại các điểm
x = π 4 + k 2 π , k ∈ ℤ
D. Hàm số đạt cực tiểu tại các điểm
x = π 4 + k 2 π , k ∈ ℤ
Tìm họ nguyên hàm của hàm số lượng giác sau :
\(f\left(x\right)=\int\frac{4\sin x+3\cos x}{\sin x+2\cos x}dx\)
Tính đạo hàm của hàm số y = log 2 ( sin x ) .
A. y ' = tan x ln 2
B. y ' = cot x ln 2
C. y ' = − tan x ln 2
D. y ' = − cot x ln 2
Trong các hàm số y = tan x ; y = sin 2 x ; y = sin x ; y = c o t x có bao nhiêu hàm số thỏa mãn tính chất f x + k π = f x ; ∀ x ∈ ℝ ; k ∈ ℤ
A. 3
B. 2
C. 1
D. 4
Tìm GTLN và GTNN của hàm số y = sin x + 2 cos x + 1 sin x + cos x + 3 (*)
A. m a x y = 4 7 , m i n y = - 4 7
B. m a x y = 2 7 7 , m i n y = - 2 7 7
C. m a x y = 7 2 , m i n y = - 2 7
D. m a x y = 2 7 7 , m i n y = - 2 7 7
Cho hàm số y=f(x) liên tục trên R thỏa mãn ∫ 1 9 f ( x ) x d x = 4 , ∫ 0 π 2 f ( sin x ) c o s x d x = 2 . Tích phân ∫ 0 3 f ( x ) d x bằng
A. 8
B. 4
C. 6
D. 10
Hàm số y = x - sin 2 x + 3
A. Nhận điểm x = - π 6 làm điểm cực tiểu.
B. Nhận điểm x = π 2 làm điểm cực đại.
C. Nhận điểm x = - π 6 làm điểm cực đại.
D. Nhận điểm x = - π 2 làm điểm cực tiểu.