\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{9999}{10000}=\frac{3.8.15....9999}{4.9.16....10000}=?\)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{9999}{10000}=\frac{3.8.15....9999}{4.9.16....10000}=?\)
\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}....\frac{9999}{10000}< \frac{1}{100}\)
CMr
CMR :
\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}......\frac{9999}{10000}< \frac{1}{100}\)
\(\frac{\frac{5}{12}+\frac{1}{8}-\frac{7}{11}}{\frac{49}{11}-\frac{7}{8}-\frac{35}{12}}\)
\(\frac{5-\frac{5}{3}-\frac{5}{9}-\frac{5}{27}}{-8+\frac{8}{3}+\frac{8}{9}+\frac{8}{27}}:\frac{15-\frac{15}{11}-\frac{15}{121}}{16-\frac{16}{11}-\frac{16}{121}}\)
CMR;\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+.....+\frac{2499}{2500}>48\)
Tính E=\(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+...+\frac{9998}{9999}\)
\(B=\frac{4+\frac{4}{5}+\frac{4}{155}-\frac{4}{1555}+\frac{4}{235}}{8+\frac{8}{5}+\frac{16}{310}+\frac{8}{235}-\frac{8}{1555}}.\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{4+\frac{3}{2}+\frac{3}{4}}\)
câu1: P=(1-\(\frac{1}{2}\)).(1-\(\frac{1}{3}\)).(1-\(\frac{1}{4}\))....(1-\(\frac{1}{99}\))
câu 2: chứng tỏ rằng \(\frac{1}{101}\)+\(\frac{1}{102}\)+....+\(\frac{1}{299}\)+\(\frac{1}{300}\)>\(\frac{2}{3}\)
câu 3: tính tích A=\(\frac{3}{4}\).\(\frac{8}{9}\).\(\frac{15}{16}\)...\(\frac{899}{900}\)
giúp mình giải 3 câu này với mấy bạn
Tìm các dãy tỉ số bằng nhau:
a) \(\frac{x}{4}=\frac{y}{3}=\frac{3}{9}\)và x-3y+4z=62
b) \(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\)và 2x+5y-2z=100
c) \(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\)và x-y+z=(-15)
d) \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và -x+y+z=(-120)
cho \(\frac{x+16}{9}=\frac{y-15}{16}=\frac{z+9}{25}\) và \(2x^3-1=15\)
tìm x;y;z