\(A=\dfrac{x}{x+2}+\dfrac{2}{x-2}+\dfrac{2x+4}{4-x^2}\left(ĐKXĐ:x\ne\pm2\right)\)
\(A=\dfrac{x}{x+2}+\dfrac{2}{x-2}-\dfrac{2x+4}{x^2-4}\)
\(A=\dfrac{x}{x+2}+\dfrac{2}{x-2}-\dfrac{2x+4}{\left(x-2\right)\left(x+2\right)}\)
\(A=\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x+4}{\left(x-2\right)\left(x+2\right)}\)
\(A=\dfrac{\left(x^2-2x\right)+\left(2x+4\right)-\left(2x+4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(A=\dfrac{x^2-2x+2x+4-2x-4}{\left(x-2\right)\left(x+2\right)}\)
\(A=\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}\)
\(A=\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(A=\dfrac{x}{x+2}\)
\(A=\dfrac{\left(x+2\right)+1}{x+2}\)
\(A=\dfrac{x+2}{x+2}+\dfrac{1}{x+2}\)
\(A=1+\dfrac{1}{x+2}\)
\(MàA\in Z\)
\(\Rightarrow\dfrac{1}{x+2}\in Z\)
\(\Rightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)
Xét bảng:
\(x+2\) | \(1\) | \(-1\) |
\(x\) | \(-1\left(tm\right)\) | \(-3\left(tm\right)\) |