ai giúp mình với mình cần gấp, tối nay là mk phải nộp rồi:
a) rút gọn P
\(\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right).\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\)
b) tính P tại x= \(3-2\sqrt{2}\)
c) tìm x để P>0
rút gọn :
A = \(\left(\frac{2x+1}{\sqrt{x}^3-1}-\frac{\sqrt{x}}{x-\sqrt{x}+1}\right).\left(\frac{3\sqrt{x}+\sqrt{x}^3}{x-3x}-\sqrt{x}\right)\)mk cần gấp ai giải nhanh hộ vs thanks
Tìm m để hệ phương trình sau có nghiệm duy nhất thỏa mãn x>y:
\(\begin{cases}x+\left(m-1\right)y=2\\\left(m+1\right)x-y=m+1\end{cases}\)
GIÚP MK VS MẤY BẠN ƠI. MÌNH CẦN GẤP LẮM!!!
Mọi người giúp mình bài này với. Thanks!
Giải phương trình: \(\left(3\sqrt{x}-\sqrt{x+8}\right)\left(4+\sqrt{x^2+8x}\right)=16\left(x-1\right)\)
1) cho \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\) . tính M = \(x^2+y^2\)
2) tìm các cặp x,y thỏa mãn \(\left\{{}\begin{matrix}\left(x+y\right)\left(x^2+y^2\right)=15\\\left(x-y\right)\left(x^2-y^2\right)=3\end{matrix}\right.\)
3) tìm các cặp x,y nguyên thỏa \(x^6+3x^3+1=y^4\)
1) cho a,b,c dương thỏa a+b+c=1 CMR \(\sqrt{\left(ab+c\right)\left(bc+a\right)\left(ac+b\right)}=\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
2) cho x,y dương thỏa mãn \(x\sqrt{x}+y\sqrt{y}=x^2+y^2=x^2\sqrt{x}+y^2\sqrt{y}\) .tính tổng x+y
3) ghpt \(\left\{{}\begin{matrix}x^2+2y^2=2\\3x^2+4xy+4x+3y=y^2-4\end{matrix}\right.\)
4) gpt \(\sqrt{x^2+3}+\dfrac{4x}{\sqrt{x^2+3}}=5\sqrt{x}\)
1) ghpt a)\(\left\{{}\begin{matrix}2x+\dfrac{y}{\sqrt{4x^2+1}+2x}+y^2=0\\4\left(\dfrac{x}{y}\right)^2+2\sqrt{4x^2+1}+y^2=3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(x^2-1\right)y+\left(y^2-1\right)=2\left(xy-1\right)\\4x^2+y^2+2x-y-6=0\end{matrix}\right.\)
2) tìm các số nguyên x,y thỏa mãn \(x^2+y^2-xy=x+y+2\)
3) gpt \(\sqrt{2x^2-x}=2x-x^2\)
bài 1: vs x,y,z là các số thực dương t/m xy+yz+xz=5 tìm min
\(p=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}}\)
bài 2 gpt
a)\(x^3+3x^2-3x+1=0\)
b)\(x^3-x^2-x=\frac{1}{3}\)
c)\(x^4+2x^3-6x^2+4x-1=0\)
Với x, y là các số dương t/m : \(\left[xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right]^2=2016\)
Tính gái trị của bt : \(S=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)