Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khôi Bùi

Tìm tất cả các số nguyên dương n sao cho : \(\left(n!\right)^n⋮\left(n^2-1\right)!\)  ( KS CL HSG tỉnh Vĩnh Phúc)

Nguyễn Việt Lâm
7 tháng 4 2022 lúc 14:09

Trước hết ta dùng quy tắc tổ hợp chứng minh điều này: \(\dfrac{\left(n^2\right)!}{\left(n!\right)^{n+1}}\) luôn luôn là 1 số nguyên dương 

Giả sử có \(n^2\) người, ta muốn chia họ vào n nhóm khác nhau, mỗi nhóm có đúng n người. Thứ tự của các nhóm và thứ tự mỗi người trong nhóm không quan trọng.

Xếp vị trí \(n^2\) người, có \(\left(n^2\right)!\) cách

Do trong các nhóm, vị trí mỗi người là không quan trọng nên mỗi nhóm bị lặp lại \(n!\) lần cách xếp (là hoán vị của n người trong nhóm). Như vậy, với n nhóm ta đã bị lặp lại: \(n!.n!...n!=\left(n!\right)^n\) lần xếp

Do vị trí của mỗi nhóm là không quan trọng, do đó khi xếp ta đã lặp lại thêm \(n!\) lần (là hoán vị của các nhóm với nhau)

Tổng cộng, ta đã lặp: \(\left(n!\right)^n.n!=\left(n!\right)^{n+1}\) lần xếp

Do đó, số cách xếp thực sự là: \(\dfrac{\left(n^2\right)!}{\left(n!\right)^{n+1}}\)

Số cách xếp vị trí hiển nhiên phải là 1 số nguyên dương, do đó, \(\dfrac{\left(n^2\right)!}{\left(n!\right)^{n+1}}\) cũng phải là 1 số nguyên dương

\(\Rightarrow\left(n^2\right)!=k.\left(n!\right)^{n+1}\) với k là số nguyên dương

Để \(\left(n!\right)^n⋮\left(n^2-1\right)!\Rightarrow\left(n!\right)^n=m.\left(n^2-1\right)!\) với m nguyên dương

\(\Rightarrow\left(n!\right)^n=m.\dfrac{\left(n^2\right)!}{n^2}=m.\dfrac{k.\left(n!\right)^{n+1}}{n^2}\)

\(\Rightarrow n!.k.m=n^2\)

\(\Rightarrow n=\left(n-1\right)!.k.m\ge\left(n-2\right)\left(n-1\right).k.m\ge\left(n-2\right)\left(n-1\right)\)

\(\Rightarrow n^2-4n+2\le0\)

\(\Rightarrow n\le2+\sqrt{2}\Rightarrow n=\left\{1;2;3\right\}\)

Thử lại chỉ có \(n=1\) thỏa mãn

Vậy \(n=1\) là số nguyên dương duy nhất thỏa mãn yêu cầu

FLT24
7 tháng 4 2022 lúc 17:07

Em cx ms nghĩ được 1 phần thôi ạ ; em dùng LTE ạ k biết có đúng k ? 

Với mỗi số nguyên tố p và số nguyên dương q kí hiệu \(v_p\left(q\right)\) là số mũ đúng của p trong phân tích tiêu chuẩn ra thừa số nguyên tố của \(q!\)

C/m : n = 4 và n = p là số nguyên tố thì (n!)^n \(⋮̸\) \(\left(n^2-1\right)!\)

Thật vậy ; n = 4 thì \(v_2\left(4!\right)^4=4v_2\left(24\right)=12>11=v_2\left(4^2-1\right)!\)  

=>  (n!)^n \(⋮̸\) \(\left(n^2-1\right)!\) 

CMTT với n = p 

Tiếp theo ; ta c/m : n \(\ne4\) và \(n\ne p\) thì \(\left(n!\right)^n⋮\left(n^2-1\right)!\)

(Đoạn này e chưa ra) 


Các câu hỏi tương tự
Lê Song Phương
Xem chi tiết
Phạm Văn Tài
Xem chi tiết
títtt
Xem chi tiết
Trần Tuấn Hoàng
Xem chi tiết
Lữ khách cô đơn
Xem chi tiết
títtt
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết
Lê Song Phương
Xem chi tiết
Phương Lee
Xem chi tiết