Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương Lee

1.lim\(_{x->\infty}\) \(\sqrt{16x^2-3x+5}\) +2x-5 

2. Tổng tất cả các số hạng của cấp số nhân: -\(\dfrac{1}{3}\);\(\dfrac{1}{9}\);-\(\dfrac{1}{27}\);...;\(\dfrac{\left(-1\right)^n}{3^n}\);... bằng bao nhiêu?

3. Tìm m để đồ thị hàm số y=(2m-1)x4-2x2+3m+5 tại điểm có hoành độ x=1 vuông góc với đường thẳng d:5x-y-2018=0?

4. Gọi hình chóp tứ giác đều có tất cả các cạnh bằng 5a. Gọi \(\varphi\)là góc giữa 1 mặt bên bất kì với mặt đáy. Khẳng đinh nào sau đây đúng?

A. sin \(\varphi\)=\(\dfrac{\sqrt{6}}{3}\)

B. sin \(\varphi\)=\(\dfrac{\sqrt{3}}{3}\)

C. sin \(\varphi\)=\(\dfrac{\sqrt{2}}{2}\)

D. sin \(\varphi\)=\(\dfrac{2\sqrt{2}}{3}\)

5. Cho tứ diện S.ABC có (SBC) và (ABC) là 2 tam giác đều cạnh a, SA=\(\dfrac{a\sqrt{3}}{2}\). M là 1 điểm trên AB sao cho AM=\(\dfrac{2a}{3}\), gọi (P) là mp qua M và vuông góc với BC. Thiết diện của (P) và tứ diện A.ABC có diện tích bằng bao nhiêu?

Hoàng Tử Hà
18 tháng 4 2021 lúc 20:40

1/ \(=\lim\limits_{x\rightarrow-\infty}x\left(-\sqrt{\dfrac{16x^2}{x^2}-\dfrac{3x}{x^2}+\dfrac{5}{x^2}}+2-\dfrac{5}{x}\right)=\lim\limits_{x\rightarrow-\infty}x\left(-4+2\right)=-\infty\)

\(=\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{\dfrac{16x^2}{x^2}-\dfrac{3x}{x^2}+\dfrac{5}{x^2}}+2-\dfrac{5}{x}\right)=\lim\limits_{x\rightarrow+\infty}x\left(4+2\right)=+\infty\)

2/ \(S=\dfrac{-\dfrac{1}{3}}{1+\dfrac{1}{3}}=-\dfrac{1}{4}\)

4/ undefined

5/ undefined

Hoàng Tử Hà
18 tháng 4 2021 lúc 20:48

\(f'\left(x\right)=4\left(2m-1\right)x^3-4x\)

Vì tiếp tuyến vuông góc với \(y=5x-2018\Rightarrow f'\left(x\right)=-\dfrac{1}{5}\)

\(\Rightarrow f'\left(1\right)=-\dfrac{1}{5}\Leftrightarrow4\left(2m-1\right)-4=-\dfrac{1}{5}\Leftrightarrow m=\dfrac{39}{40}\)


Các câu hỏi tương tự
Đỗ Hải Đăng
Xem chi tiết
ha:rt the hanoi
Xem chi tiết
Nguyễn Thị Hiền
Xem chi tiết
Khánh Ngô Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
Xem chi tiết
Ngọc
Xem chi tiết
Tam Bui
Xem chi tiết
títtt
Xem chi tiết
lê vũ mai linh
Xem chi tiết