1.lim\(_{x->\infty}\) \(\sqrt{16x^2-3x+5}\) +2x-5
2. Tổng tất cả các số hạng của cấp số nhân: -\(\dfrac{1}{3}\);\(\dfrac{1}{9}\);-\(\dfrac{1}{27}\);...;\(\dfrac{\left(-1\right)^n}{3^n}\);... bằng bao nhiêu?
3. Tìm m để đồ thị hàm số y=(2m-1)x4-2x2+3m+5 tại điểm có hoành độ x=1 vuông góc với đường thẳng d:5x-y-2018=0?
4. Gọi hình chóp tứ giác đều có tất cả các cạnh bằng 5a. Gọi \(\varphi\)là góc giữa 1 mặt bên bất kì với mặt đáy. Khẳng đinh nào sau đây đúng?
A. sin \(\varphi\)=\(\dfrac{\sqrt{6}}{3}\)
B. sin \(\varphi\)=\(\dfrac{\sqrt{3}}{3}\)
C. sin \(\varphi\)=\(\dfrac{\sqrt{2}}{2}\)
D. sin \(\varphi\)=\(\dfrac{2\sqrt{2}}{3}\)
5. Cho tứ diện S.ABC có (SBC) và (ABC) là 2 tam giác đều cạnh a, SA=\(\dfrac{a\sqrt{3}}{2}\). M là 1 điểm trên AB sao cho AM=\(\dfrac{2a}{3}\), gọi (P) là mp qua M và vuông góc với BC. Thiết diện của (P) và tứ diện A.ABC có diện tích bằng bao nhiêu?
1/ \(=\lim\limits_{x\rightarrow-\infty}x\left(-\sqrt{\dfrac{16x^2}{x^2}-\dfrac{3x}{x^2}+\dfrac{5}{x^2}}+2-\dfrac{5}{x}\right)=\lim\limits_{x\rightarrow-\infty}x\left(-4+2\right)=-\infty\)
\(=\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{\dfrac{16x^2}{x^2}-\dfrac{3x}{x^2}+\dfrac{5}{x^2}}+2-\dfrac{5}{x}\right)=\lim\limits_{x\rightarrow+\infty}x\left(4+2\right)=+\infty\)
2/ \(S=\dfrac{-\dfrac{1}{3}}{1+\dfrac{1}{3}}=-\dfrac{1}{4}\)
4/
5/
\(f'\left(x\right)=4\left(2m-1\right)x^3-4x\)
Vì tiếp tuyến vuông góc với \(y=5x-2018\Rightarrow f'\left(x\right)=-\dfrac{1}{5}\)
\(\Rightarrow f'\left(1\right)=-\dfrac{1}{5}\Leftrightarrow4\left(2m-1\right)-4=-\dfrac{1}{5}\Leftrightarrow m=\dfrac{39}{40}\)