D)
x2+x+1=(x+1/2)2+3/4 >=3/4
Vậy min=3/4 ⇔ x+1/2=0 ⇔ x=-1/2
a: \(=\left(x+1\right)^2>=0\)
Dấu '=' xảy ra khi x=-1
d: \(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)
Dấu '=' xảy ra khi x=-1/2
b: \(=x^2+10x+16-8=\left(x+4\right)^2-8>=-8\)
Dấu '=' xảy ra khi x=-4
c: \(=4x^2+12x+9-8=\left(2x+3\right)^2-8>=-8\)
Dấu'=' xảy ra khi x=-3/2