Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
aaron

Tìm Giá trị nhỏ nhất 
a) A= x2 - 2x + y2 -4y +7 
b) B= (x-1) (x+2) (x+3) ( x+6)

Nguyễn Lê Phước Thịnh
17 tháng 2 2022 lúc 21:55

a: \(A=x^2-2x+1+y^2-4y+4+2=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\forall x,y\)

Dấu '=' xảy ra khi x=1 và y=2

b: \(B=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\forall x\)

Dấu '=' xảy ra khi x=0 hoặc x=-5

Trần Tuấn Hoàng
17 tháng 2 2022 lúc 22:04

a) \(A=x^2-2x+y^2-4y+7\)

\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)

\(A_{min}=2\Leftrightarrow x=1;y=2\).

b) \(B=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

-Đặt \(t=x^2+5x-6\)

\(B=t\left(t+12\right)=t^2+12t=t^2+12t+36-36=\left(t+6\right)^2-36\ge-36\)

\(B_{min}=-36\Leftrightarrow t=-6\Leftrightarrow x^2+5x-6=-6\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow x=0hayx=-5\)


Các câu hỏi tương tự
Mạnh=_=
Xem chi tiết
Hương Linh
Xem chi tiết
Tớ Chưa Bồ
Xem chi tiết
Nguyền Hoàng Minh
Xem chi tiết
tuedho2018
Xem chi tiết
aaron
Xem chi tiết
Tuyết Ly
Xem chi tiết
Kainna
Xem chi tiết
Trương Ngọc Anh Tuấn
Xem chi tiết