\(B=\dfrac{3\left(x+1\right)}{x^3+x^2+x+1}=\dfrac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}=\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}=\dfrac{3}{x^2+1}\)
Do \(x^2\ge0\forall x\Rightarrow x^2+1\ge1\forall x\)
\(\Rightarrow B=\dfrac{3}{x^2+1}\le\dfrac{3}{1}=3\)
\(maxB=3\Leftrightarrow x^2=0\Leftrightarrow x=0\)
\(B=\dfrac{3\left(x+1\right)}{x^2\left(x+1\right)+x+1}=\dfrac{3}{x^2+1}\)
Ta có : \(x^2+1\ge1\Rightarrow\dfrac{3}{x^2+1}\le3\)
Dấu ''='' xảy ra khi x =0
Vậy với x = 0 thì B đạt GTLN là 3
=\(\dfrac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)
=\(\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\)
=\(\dfrac{3}{x^2+1}\)
Ta có \(x^2\ge0\)
=>\(x^2+1\ge1\)
=>\(\dfrac{3}{x^2+1}\le3\)
hay \(B\le3\)
Dấu = xảy ra khi và chỉ khi x=0
\(B=\dfrac{3\left(x+1\right)}{x^3+x^2+x+1}=\dfrac{3\left(x+1\right)}{x^2\left(x+1\right)+x+1}\)
\(=\dfrac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}=\dfrac{3}{x^2+1}\) (đk: \(x\ne1\))
Vì \(\left(x^2+1\right)\ge1,\forall x\)
\(\Rightarrow B\le3\forall x\)
Min \(B=3\Leftrightarrow x=0\)