Cho \(\left\{{}\begin{matrix}x>-1\\y< 2\\z>-\dfrac{1}{2}\end{matrix}\right.\). Tìm giá trị lớn nhất của biểu thức:
\(F=\left(1+x\right)\left(2-y\right)\left(1+2z\right)\).
cho hàm số \(\begin{matrix}\\\end{matrix}\)f(x) \(\left\{{}\begin{matrix}\sqrt{x+1}-2.khi,x\ge-1\\3x^2-x+1.khi,x< -1\end{matrix}\right.\)
giá trị f(-3) + f(0) bằng
1. Tìm m để hệ bpt sau có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x^2+2x+m+1\le0\\x^2-4x-6\left(m+1\right)< 0\end{matrix}\right.\)
2. Tìm các giá trị của m để biểu thức sau luôn dương
\(f\left(x\right)=\dfrac{-x^2+4\left(m+1\right)+1-4m^2}{-4x^2+5x-2}\)
3. Giải bpt sau
\(\dfrac{\left|x^2-x\right|-2}{x^2-x-1}\ge0\)
cho hàm số f(x)=\(\left\{{}\begin{matrix}\dfrac{2}{x-1}\\\sqrt{x+1}\\x^2-1\end{matrix}\right.\) xϵ(-∞;0) , xϵ[0;2] , xϵ(2;5]. Tính f(4)
\(8x^2-5x-22=\left(ax+11\right)\left(bx-2\right)\)
\(\Leftrightarrow\left(8x+11\right)\left(x-2\right)=\left(ax+11\right)\left(bx-2\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=1\end{matrix}\right.\Rightarrow a-b=8-1=7\)
tìm m ϵ Z để hệ phương trình sau có nghiệm nguyên
a) \(\left\{{}\begin{matrix}mx-y=1\\x+4\left(m+1\right)y=4m\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(m+1\right)x+\left(3m+1\right)y=2-m\\2x+\left(m+2\right)y=4\end{matrix}\right.\)
Tìm tập xác định của hàm số y = f(x) = \(\left\{{}\begin{matrix}\sqrt{-3x+8}+x\\\sqrt{x+7}+1\end{matrix}\right.\)
cái đầu khi x<2, cái sau x≥2
Giúp với ạ.
Tìm tất cả hàm số \(f:R\backslash\left\{0,1\right\}\rightarrow R\) thoả mãn
\(f\left(\dfrac{1}{1-x}\right)+f\left(\dfrac{x-1}{x}\right)=x+1-\dfrac{1}{x}\) , \(\forall x\in R\backslash\left\{0,1\right\}\)
tìm \(f:R\rightarrow R\)thỏa mãn : \(f\left(x\right)=\frac{x}{f\left(\frac{1}{x}\right)}\), \(x\ne0\)và \(f\left(x\right)+f\left(y\right)=1+f\left(x+y\right)\)với \(x\ne0,y\ne0\)
Tìm tất cả các hàm \(f:R\rightarrow R\)thõa
\(f\left(x\right)+f\left(y\right)=f\left(x+y\right)-xy-1\)và \(f\left(1\right)=1\)