a. TXĐ: D=R
$y'=3x^2-6x=0\Leftrightarrow x=0$ hoặc $x=2$
$y''=6x-6$
$y''(0)=-6<0$ nên hàm số đạt cực đại tại $x=0$, giá trị cực đại tương ứng là $y=9$
$y''(2)=6>0$ nên hàm số đạt cực tiểu tại $x=2$, giá trị cực tiểu tương ứng là $y=5$
b. TXĐ: $D=R$
$y=\frac{1}{3}x^3-2x^2+15x+3$
$y'=x^2-4x+15=(x-2)^2+11>0$ với mọi $x\in D$
Do đó hàm $y$ đồng biến trên toàn tập xác định nên không có cực trị.