Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dương Nguyễn

Tìm các số thực a, b thỏa mãn \(\lim\limits_{x\rightarrow1}\)\(\dfrac{2x^2+ax+b}{x^2+2x-3}=\dfrac{3}{4}\)

Nguyễn Việt Lâm
8 tháng 3 2022 lúc 22:09

\(x^2+2x-3=0\) có nghiệm \(x=1\) nên giới hạn đã cho hữu hạn khi \(2x^2+ax+b=0\) cũng có nghiệm \(x=1\)

\(\Rightarrow2.1^2+a.1+b=0\Rightarrow a+b+2=0\Rightarrow b=-a-2\)

Thay vào:

\(\lim\limits_{x\rightarrow1}\dfrac{2x^2+ax-a-2}{x^2+2x-3}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(2x+2\right)+a\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(2x+2+a\right)}{\left(x-1\right)\left(x+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{2x+2+a}{x+3}=\dfrac{4+a}{4}=\dfrac{3}{4}\)

\(\Rightarrow4+a=3\Rightarrow a=-1\Rightarrow b=-a-2=-1\)

Nguyễn Thanh Hằng
8 tháng 3 2022 lúc 22:17

undefined


Các câu hỏi tương tự
Nguyễn Xuân Đình Lực
Xem chi tiết
Tiên Tiên
Xem chi tiết
Dương Nguyễn
Xem chi tiết
Dương Nguyễn
Xem chi tiết
títtt
Xem chi tiết
♥ Aoko ♥
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
You are my sunshine
Xem chi tiết