\(\dfrac{M}{N}=\dfrac{x^4-x^3+6x^2-x+a}{x^2-x+5}\)
\(=\dfrac{x^4-x^3+5x^2+x^2-x+5+a-5}{x^2-x+5}\)
\(=x^2+1+\dfrac{a-5}{x^2-x+5}\)
Để M chiahết cho N thì a-5=0
=>a=5
Để M chia N dư 3 thì a-5=3
=>a=8
\(\dfrac{M}{N}=\dfrac{x^4-x^3+6x^2-x+a}{x^2-x+5}\)
\(=\dfrac{x^4-x^3+5x^2+x^2-x+5+a-5}{x^2-x+5}\)
\(=x^2+1+\dfrac{a-5}{x^2-x+5}\)
Để M chiahết cho N thì a-5=0
=>a=5
Để M chia N dư 3 thì a-5=3
=>a=8
cho đa thức f(x)=x3 +(2m-n)x2-(m-3n)x+m.Tìm m và n để đa thức nhận m và n là nghiêm
Cho M(x) = 2x^5 - 4x^3 + 2x^2 + 10x - 1
và N(x) = -2x^5 + 2x^4 + 4x^3 + x^2 + x - 10
a/. Tính M(x) + N(x)
b/. Tìm A(x), biết A(x) + M(x) = N(x)
Bài 1: Cho hai đa thức
M (x) = -5x4 + 3x5 + x (x2 + 5) +14x4 - 6x5 - x3 + x -1
N(x) = x4x - 5 - 3x3 + 3x + 2x5 - 4x4 + 3x3 - 5
a) Thu gọn và sắp xếp 2 đa thức trên theo lũy thừa giảm dần của biển
b) Tính H (x) = M (x) + N (x);G(x) = M (x) - N (x)
c) Tìm hệ số cao nhất và hệ số tự do của H(x) và G(x)
d) Tìm nghiệm đa thức H(x). Tính H(1), H(-1) , G(1) , G(0)
Cho các đa thức M(x)=-2x^3+4x+x^2-3 và N(x)= 2x^3+x2-5-4x 1) Tính P(x) = M(x) + N(x) 2) Tìm nghiệm của đa thức P(x) 3) Tìm đa thức Q(x) biết Q(x) + N(x) = M(x)
Cho 2 đâ thức P(x)=2x3-x+x2-x3+3x+5
Q(x)=3x3+4x2+3x-4x3-5x2+10
a thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến
b Tìm các đa thức M(x) Và N(x) biết rằng M(x)=P(x)+Q(x);N(x)=P(x)-Q(x)
Cho 2 đa thức M(X)=3x^4+9x^3-x+6; N(x)=2x^4-9x^3+x+4
a) tìm đa thức A(x)=2*M(x)3*N(x) biết
b)Tìm nghiệm của đa thức A(x)
c) Chứng minh rằng: không tồn tại giá trị của x để M(x) và N(x) là 2 số đối nhau
Tìm đa thức M, N biết :
a/ M + (5x2 – 2xy) = 6x2 + 9xy – y2
b/(3xy – 4y2)- N = x2 – 7xy + 8y2
(Nghỉ dịch từ ngày 28/2/2022)
Bài 1:
a) Cho hai đa thức: M = 2x2 – 2xy – 3y2 + 1; N = x2 – 2xy + 3y2 – 1
Tính M + N; M – N.
b) Cho hai đa thức: P(x) = x3 – 6x + 2; Q(x) = 2x2 - 4x3 + x - 5
+ Tính P(x) + Q(x)
+ Tính P(x) - Q(x)
Bài 2: Tìm x biết:
a) (x - 8 )( x3+ 8) = 0; b) (4x - 3) – ( x + 5) = 3(10 - x)
Bài 3: Cho đa thức: P(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – 2x4 + 1 – 4x3.
a) Thu gọn và xắp sếp các hạng tử của đa thức trên theo lũy thừa giảm của biến.
b) Tính P(1) và P(–1).
Bài 4: Tính nhanh (nếu có thể):
Bài 5: Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC.
a) Chứng minh ΔAMB = ΔAMC và AM là tia phân giác của góc A.
b) Chứng minh AM vuông góc với BC.
c) Tính độ dài các đoạn thẳng BM và AM.
d) Từ M vẽ ME AB (E thuộc AB) và MF AC (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?
Bài 6: Cho ΔABC cân có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc với BC.
a) Chứng minh: HB = HC.
b) Tính độ dài AH.
c) Kẻ HD vuông góc với AB (D∈AB), kẻ HE vuông góc với AC (E∈AC).
Chứng minh ΔHDE cân.
d) So sánh HD và HC.
f(X)=x3-2x2+2x+1
g (x )= x3+x+1
h(x)=2x2-1
a, Tính M(x) = f(x) - g(x)
N (x) = g(x) + h(x)
b, Tìm bậc, hệ số cao nhất, hệ số tự do của M(x) và N(x).
c, Tính M(-1); N(2), M(2), N(-3)?