(Nghỉ dịch từ ngày 28/2/2022)
Bài 1:
a) Cho hai đa thức: M = 2x2 – 2xy – 3y2 + 1; N = x2 – 2xy + 3y2 – 1
Tính M + N; M – N.
b) Cho hai đa thức: P(x) = x3 – 6x + 2; Q(x) = 2x2 - 4x3 + x - 5
+ Tính P(x) + Q(x)
+ Tính P(x) - Q(x)
Bài 2: Tìm x biết:
a) (x - 8 )( x3+ 8) = 0; b) (4x - 3) – ( x + 5) = 3(10 - x)
Bài 3: Cho đa thức: P(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – 2x4 + 1 – 4x3.
a) Thu gọn và xắp sếp các hạng tử của đa thức trên theo lũy thừa giảm của biến.
b) Tính P(1) và P(–1).
Bài 4: Tính nhanh (nếu có thể):
Bài 5: Cho tam giác ABC có AB = AC = 5cm, BC = 6cm. Đường trung tuyến AM xuất phát từ đỉnh A của tam giác ABC.
a) Chứng minh ΔAMB = ΔAMC và AM là tia phân giác của góc A.
b) Chứng minh AM vuông góc với BC.
c) Tính độ dài các đoạn thẳng BM và AM.
d) Từ M vẽ ME AB (E thuộc AB) và MF AC (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?
Bài 6: Cho ΔABC cân có AB = AC = 5cm, BC = 8cm. Kẻ AH vuông góc với BC.
a) Chứng minh: HB = HC.
b) Tính độ dài AH.
c) Kẻ HD vuông góc với AB (D∈AB), kẻ HE vuông góc với AC (E∈AC).
Chứng minh ΔHDE cân.
d) So sánh HD và HC.
Bài 2:
a: \(\left(x-8\right)\left(x^3+8\right)=0\)
=>\(\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b: \(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
=>\(4x-3-x-5=30-3x\)
=>3x-8=30-3x
=>6x=38
=>\(x=\dfrac{38}{6}=\dfrac{19}{3}\)
Bài 6:
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
b: Ta có: HB=HC
H nằm giữa B và C
Do đó: H là trung điểm của BC
=>\(HB=HC=\dfrac{8}{2}=4\left(cm\right)\)
ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=5^2-4^2=9\)
=>\(AH=\sqrt{9}=3\left(cm\right)\)
c: Ta có: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H
d: Ta có: HD=HE
HE<HC(ΔHEC vuông tại E)
Do đó:HD<HC