Đáp án B.
Phương pháp
Thể tích hình lập phương có các kích thước a, b, c: V = a b c
Cách giải
Ta có:
V A B C D . A ' B ' C ' D ' = A B . A D . A A ' = 3.4.5 = 60.
Đáp án B.
Phương pháp
Thể tích hình lập phương có các kích thước a, b, c: V = a b c
Cách giải
Ta có:
V A B C D . A ' B ' C ' D ' = A B . A D . A A ' = 3.4.5 = 60.
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB=a, AD=b, AA’=c. Tính thể tích V của khối chóp A.A’B’C’D’
A. V = 1 6 a b c
B. V = a b c
C. V = 1 3 a b c
D. V = 1 2 a b c
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB=a,A’=2a. Biết thể tích hình cầu ngoại tiếp
tứ diện ABCD’ là
9
π
2
a
3
. Tính thể tích V của hình chữ nhật ABCD.A’B’C’D’
A. 2 a 3 3
B. 2 a 3
C. 4 a 3
D. 4 a 3 3
Cho hình hộp đứng ABCD.A’B’C’D’ có tất cả các cạnh đều bằng a, A B C ^ = 45 ° . Tính thể tích V của khối hộp ABCD.A’B’C’D’.
A. V = a 3 2 4
B. V = a 3
C. V = a 3 2 2
D. V = 2 a 3
Một hình hộp chữ nhật có ba kích thước là a, b, c. Thể tích V của khối hộp chữ nhật đó bằng
A.(a+b)c
B. 1 3 a b c
C. abc
D.(a+c)b
Một hình hộp chữ nhật có ba kích thước a , b , c . là V Thể tích của khối hộp chữ nhật đó bằng
A. a + c b .
B. a b c .
C. a + b c .
D. 1 3 a b c .
Cho hình hộp chữ nhật ABCD.A′B′C′D′ có A B = a , A A ' = 2 a . Biết thể tích hình cầu ngoại tiếp tứ diện ABCD′ là 9 π 2 a 3 . Tính thể tích V của hình chữ nhật ABCD.A′B′C′D′.
A. 4 a 3
B. 4 a 3 3
C. 2 a 3
D. 2 a 3 3
Cho hình hộp ABCD.A’B’C’D’ có diện tích các mặt (ABCD), (ABB’A’) (ADD’A’) lần lượt bằng 20 c m 2 , 28 c m 2 , 35 c m 2 . Tính thể tích V của khối hộp chữ nhật ABCD.A’B’C’D’
A. 120 c m 3
B. 160 c m 3
C. 130 c m 3
D. 140 c m 3
Cho khối hộp chữ nhật ABCD.A’B’C’D’ có AB=a, AD=b, AC=c. Thể tích khối hộp chữ nhật ABCD.A’B’C’D’ bằng bao nhiêu?
A. 1 3 abc
B. 3abc
C. abc
D. 1 2 abc
Cho hình hộp ABCD.A’B’C’D’ có A(1;0;0), B(2;-1;1), D(0;1;1) và A’(1;2;1). Gọi M, N, P, Q, E, F lần lượt là giao điểm của hai đường chéo của sáu mặt hình hộp. Tính thể tích của V khối đa diện lồi hình thànhbởi sáu điểm M, N, P, Q, E, F.
A. V = 1 3
B. V = 1 2
C. V = 2 3
D. V = 1