Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 8
D. 13 2 a 3 216
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V.
A. 11 2 a 3 216
B. 7 2 a 3 216
C. 2 a 3 18
D. 13 2 a 3 216
Cho khối chóp S.ABCD có đáy là hình bình hành, thể tích bằng 1. Gọi M là trung điểm cạnh SA; các điểm E,F lần lượt là điểm đối xứng của A qua B và D. Mặt phẳng (MEF) cắt các cạnh SB,SD lần lượt tại các điểm N,P. Thể tích của khối đa diện ABCDMNP bằng
A. 2 3
B. 1 3
C. 3 4
D. 1 4
Cho khối lăng trụ ABC.A′B′C′ có thể tích V, đáy là tam giác cân, AB = AC. Gọi E là trung điểm cạnh AB và F là hình chiếu vuông góc của E lên BC. Mặt phẳng (C′EF) chia khối lăng trụ đã cho thành hai khối đa diện. Tính thể tích của khối đa diện chứa đỉnh A.
A. 47 72 V
B. 25 72 V
C. 29 72 V
D. 43 72 V
Cho hình hộp ABCD.A’B’C’D’ có thể tích V, gọi M, N là hai điểm thỏa mãn D ' M → = 2 M D → , C ' N → = 2 N C → , đường thẳng AM cắt đường thẳng A’D’ tại P, đường thẳng BN cắt đường thẳng B’C’ tại Q. Thể tích của khối PQNMD’C’ bằng
A. 2 3 V
B. 1 3 V
C. 1 2 V
D. 3 4 V
Cho hình chóp S.ABC có S A = S B = S C = 3 , tam giác ABC vuông cân tại B và
A C = 2 2 . Gọi M, N lần lượt là trung điểm của AC và BC. Trên hai cạnh SA, SB lấy các điểm P, Q tương ứng sao cho S P = 1 , S Q = 2. Tính thể tích V của khối tứ diện M N P Q .
A. V = 7 18
B. V = 3 12
C. V = 34 12
D. V = 34 144
Cho khối tứ diện ABCD có thể tích là V. Gọi E, F, G lần lượt là trung điểm BC, BD, CD và M, N, P, Q lần lượt là trọng tâm ∆ A B C ; ∆ A B D ; ∆ A C D ; ∆ B C D . Tính thể tích khối tứ diện MNPQ theo V.
A. V 9
B. V 3
C. 2 V 9
D. V 27
Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích là 48. Trên các cạnh SA, SB, SC, SD lần lượt lấy các điểm A',B',C' và D' sao cho SA ' SA = SC ' SC = 1 3 và SB ' SB = SD ' SD = 3 4 . Tính thể tích V của khối đa diện lồi SA' B' C' D'.
A. V= 4.
B. V= 6.
C. V= 3/2.
D. V= 9.
Cho hình hộp ABCD.A'B'C'D' có AB=AD=2a, AA'=4a. Lấy M, N, P, Q lần lượt là trung điểm của AA’, BB’,CC, DD’. Biết hình hộp chữ nhật ABCD.A'B'C'D' nội tiếp khối trụ (T) và lăng trụ ABCD.MNPQ nội tiếp mặt cầu (C). Tỉ số thể tích V ( T ' ) V ( C ) giữa khối cầu và khối trụ là
A. 2 3 3
B. 3 3
C. 2 3 3
D. 1 2 3