Xét các số phức z thoả mãn z ¯ + 2 i z + 3 là số thuần ảo. Trên mặt phẳng toạ độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng
A . 13
B . 11
C. 11 2
D. 13 2
Xét các số phức z thỏa mãn ( z + 2 i ) ( z ¯ + 2 ) là số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là
Xét các số phức z thỏa mãn z + 2 i z ¯ + 2 là số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là
A.(1;-1)
B. (1;1)
C. (-1;1)
D. (-1;-1)
Xét các số phức z thỏa mãn ( z ¯ +i)(z+2) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả
các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng
A. 1
B. 5 4
C. 5 2
D. 3 2
Xét các số phức z thỏa mãn là số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là
A.(1;-1)
B.(1;1)
C.(-1;1)
D.(-1;-1)
Cho số phức z = m + m 3 - m i với m là tham số thực thay đổi. Tập hợp tất cả các điểm biểu diễn số phức z là đường cong (C). Tính diện tích hình phẳng giới hạn bởi (C) và trục hoành.
A. 1 2
B. 1 4
C. 3 4
D. 3 2
Cho số phức z thỏa mãn z = 2 Biết rằng tập hợp các điểm biểu diễn số phức w=3-2i+(2-i)z là một đường tròn. Bán kính R của đường tròn đó bằng bao nhiêu?
Với các số phức z thỏa mãn z - 2 + i = 4 , tập hợp các điểm biểu diễn của số phức z là một đường tròn. Tìm bán kính R của đường tròn đó.
A. R=2
B. R=16
C. R=8
D. R=4
Hình phẳng giới hạn bởi tập hợp điểm biểu diễn các số phức z thỏa mãn z - 3 + z + 3 = 10 có diện tích bằng