Xét các số phức z thỏa mãn z + 2 i z ¯ + 2 là số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là
A.(1;-1)
B. (1;1)
C. (-1;1)
D. (-1;-1)
Xét các số phức z thỏa mãn ( z + 2 i ) ( z ¯ + 2 ) là số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là
Xét các số phức z thỏa mãn ( z ¯ +i)(z+2) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả
các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng
A. 1
B. 5 4
C. 5 2
D. 3 2
Cho số phức z thỏa mãn tập hợp |z-1|=3. Biết rằng tập hợp các điểm biểu diễn số phức w với 3 − 2 i w = i z + 2 là một đường tròn. Tìm tọa độ tâm I và bán kính r của đường tròn đó.
A. I 8 13 ; 1 13 , r = 3 13
B. I − 2 ; 3 , r = 13
C. I 4 13 ; 7 13 , r = 3 13
D. I 2 3 ; − 1 2 , r = 3
Cho số phức z thỏa mãn tập hợp |z-1|=3. Biết rằng tập hợp các điểm biểu diễn số phức w với 3 − 2 i w = i z + 2 là một đường tròn. Tìm tọa độ tâm I và bán kính r của đường tròn đó.
A. I 8 13 ; 1 13 , r = 3 13
B. I − 2 ; 3 , r = 13
C. I 4 13 ; 7 13 , r = 3 13
D. I 2 3 ; − 1 2 , r = 3
Cho số phức z thỏa mãn |z+i| = 1. Biết rằng tập hợp các điểm biểu diễn các số phức w = z - 2i là một đường tròn. Tâm của đường tròn đó là:
A. I(0;-1)
B. I(0;-3)
C. I(0;3)
D. I(0;1)
Xét các số phức z thoả mãn z ¯ + 2 i z + 3 là số thuần ảo. Trên mặt phẳng toạ độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng
A . 13
B . 11
C. 11 2
D. 13 2
Cho số phức z thỏa mãn |z|=2. Biết rằng tập hợp các điểm biểu diễn số phức w=3-2i+(2-i)z là một đường tròn. Tìm tọa độ tâm I của đường tròn đó?
A.I(3;-2)
B. I(-3;2)
C.I(3;2)
D.I(-3;-2)
Cho số phức z thỏa mãn |z|=1. Biết tập hợp các điểm biểu diễn số phức w = (3 - 4i)z -1 + 2i là đường tròn tâm I, bán kính R. Tìm tọa độ tâm I và bán kính R của đường tròn đó.