Xét các số phức z thỏa mãn ( z ¯ +i)(z+2) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả
các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng
A. 1
B. 5 4
C. 5 2
D. 3 2
Xét các số phức z thỏa mãn ( z + 2 i ) ( z ¯ + 2 ) là số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là
Xét các số phức z thỏa mãn z + 2 i z ¯ + 2 là số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là
A.(1;-1)
B. (1;1)
C. (-1;1)
D. (-1;-1)
Cho số phức z thỏa mãn: |z|= 4. Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức w thỏa mãn: w = (3+4i)z + i là một đường tròn có bán kính là:
A. 4.
B. 5.
C. 20.
D. 22.
Xét các số phức z thỏa mãn là số thuần ảo. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là
A.(1;-1)
B.(1;1)
C.(-1;1)
D.(-1;-1)
Tập hợp tất cả các điểm trong mặt phẳng toạ độ Oxy biểu diễn số phức z thoả mãn z - 1 + 2 i = z + 3 là đường thẳng có phương trình
Biết rằng tập hợp tất cả các điểm trên mặt phẳng toạ độ Oxy biểu diễn số phức z thoả mãn 3 z + z ¯ + 4 z - z ¯ = 24 là các cạnh của một hình thoi (H). Diện tích của (H) bằng
A. 48.
B. 24.
C. 16.
D. 32.
Tập hợp tất cả các điểm biểu diễn các số phức z thỏa mãn | z ¯ +2-i| là đường tròn có tâm I và bán kính R lần lượt là
A. I(-2;-1), R = 4
B. I(-2;-1), R = 2
C. I(2;-1), R = 4
D. I(2;-1), R = 2
Cho số phức z thỏa mãn z = 2 Biết rằng tập hợp các điểm biểu diễn số phức w=3-2i+(2-i)z là một đường tròn. Bán kính R của đường tròn đó bằng bao nhiêu?