Đáp án C
Ta có y = sin 2 x + 3 cos 2 x + 1 = 2 sin 2 x + π 3 + 1
Vì
− 1 ≤ sin 2 x + π 3 ≤ 1 ⇒ − 1 ≤ 2 sin 2 x + π 3 + 1 ≤ 3 ⇒ a = − 1 b = 3 ⇒ T = a + b = 2.
Đáp án C
Ta có y = sin 2 x + 3 cos 2 x + 1 = 2 sin 2 x + π 3 + 1
Vì
− 1 ≤ sin 2 x + π 3 ≤ 1 ⇒ − 1 ≤ 2 sin 2 x + π 3 + 1 ≤ 3 ⇒ a = − 1 b = 3 ⇒ T = a + b = 2.
Tập giá trị của hàm số y=sin2x+ 3 cos2x+1 là đoạn [a;b]. Tính tổng T= a+b
A. c1
B. T= 2
C. T= 0
D. T= -1
Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Biết S là tập các giá trị thực của m để hàm số y = 2 f ( x ) + m có 5 điểm cực trị. Gọi a, b lần lượt là giá trị nguyên âm lớn nhất và giá trị nguyên dương nhỏ nhất của tập S. Tính tổng T = a + b.
A. T = 2
B. T = 1
C. T = -1
D. T = -2
Gọi T = a ; b là tập các giá trị của hàm số y = x + 1 x 2 + 1 trên [-1;2]. Khẳng định nào sau đây là đúng?
A. a 2 + b 2 = 2
B. a 2 + b 2 = 9 5
C. a 2 + b 2 = 19 5
D. a 2 + b 2 = 2
Cho các mệnh đề sau đây:
(1) Hàm số f ( x ) = log 2 2 x - log 2 x 4 + 4 có tập xác định D = [ 0 ; + ∞ )
(2) Hàm số y = log a x có tiệm cận ngang
(3) Hàm số y = log a x ; 0 < a < 1 và Hàm số y = log a x , a > 1 đều đơn điệu trên tập xác định của nó
(4) Bất phương trình: log 1 2 5 - 2 x 2 - 1 ≤ 0 có 1 nghiệm nguyên thỏa mãn.
(5) Đạo hàm của hàm số y = ln 1 - cos x là sin x 1 - cos x 2
Hỏi có bao nhiêu mệnh đề đúng:
A. 0
B. 2
C. 3
D.1
Biết rằng các đường thẳng x=1,y=2 lần lượt là đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = 2 a x + 1 x - b Tính giá trị T=a+b+ab
A. T=4.
B. T=0.
C. T=2.
D. T=3.
Cho phương trình m x 2 - 2 x + 2 + 1 - x 2 + 2 x = 0 (m là tham số). Biết rằng tập hợp tất cả các giá trị của tham số m để phương trình trên có nghiệm thuộc đoạn 1 ; 1 + 2 2 là đoạn a , b .Tính giá trị biểu thức T=2b-a.
Cho hàm số y = − 1 3 x 3 + m − 1 x 2 + m + 3 x + 2 . Biết rằng tập hợp cả giá trị thực của tham số m để hàm số đồng biến trên đoạn có độ dài không lớn hơn 2 6 là đoạn T=[a;b]. Tính a + 2b.
A. 0
B. 3
C. 4
D. 5
Cho hàm số y = f(x) có đồ thị như hình bên. Biết S là tập các giá trị thực của m để hàm số y = 2 f x + m có 5 điểm cực trị. Gọi a, b lần lượt là giá trị nguyên âm lớn nhất và giá trị nguyên dương nhỏ nhất của tập S. Tổng T=a+b là
A. 2
B. 1
C. -1
D. 3
Cho hàm số f(x) liên tục trên (1;e) thỏa mãn x f x − f 1 + ln x = x 2 + x − 2 − ln x . Biết rằng ∫ 2 e f x d x = a e 2 + b e + c với a , b , c ∈ Q . Tính giá trị của T = a + b + c.
A. T = 11 2 .
B. T = -4
C. T = − 5 2 .
D. T = 3