Cho hình chóp tam giác S.ABC có S A = a ; S B = b ; S C = c và B S C ⏜ = 120 ° , C S A ⏜ = 90 ° , A S B ⏜ = 60 ° . Gọi G là trọng tâm của tam giác ABC. Độ dài đoạn SG bằng
A. 1 3 a 2 + b 2 + c 2 + a b + b c + c a
B. a 2 + b 2 + c 2 + a b - b c
C. 1 3 a 2 + b 2 + c 2 + a b - c a
D. 1 3 a 2 + b 2 + c 2 + a b - b c
Cho tam giác ABC có diện tích = 3/2, đỉnh A(2,-3), B(3,2) và trọng tâm G của tam giác ABC thuộc đường thẳng d: 3x - y-8=0. Tìm toạ độ điểm C
Cho tam giác ABC có diện tích =3/2, đỉnh A(2,-3), B(3,2) và trọng tâm G của tam giác ABC thuộc đường thẳng d: 3x-y-8=0. Tìm toạ độ điểm C
cho tam giác ABC cân tại A, đường cao AH , biết AB = 5cm, BC= 6cm
a) tính độ dài các đoạn thẳng BH, AH
b) Gọi G là trọng tâm của tam giác ABC, chứng minh rằng ba điểm A,G,H thẳng hàng ?
c) chứng minh : góc ABG= góc ACG ?
(help me!!!!!!)
Cho tam giác ABC và A(2; 3; -1), B(4; -6; -2) là trọng tâm. Tìm tọa độ của C
A. C(-5; 5; 0)
B. (3; -9; -6)
C. C(-3; 9; 6)
D. C(-3; 9; -6)
Trong không gian Oxyz, cho tam giác ABC với A(-5;7;-9),B(1;3;7),C(6;-7;-3). Gọi AH là chiều cao của tam giác ABC. Tỉ số BH/CH (tỉ số giữa độ dài hai đoạn thẳng BH và CH) là
A. 4/3.
B. 3/2.
C. 2/3.
D. 3/4
Cho mặt phẳng Oxy cho tam giác ABC có A(-1; 2), B(-2; -4), C(1; 2)
1) Viết phương trình tổng quát đường thẳng AC, phương trình tham số đường trung tuyến CM.
2) Tìm tọa độ trọng tâm G, trực tâm H, tâm đường tròn ngoại tiếp I của tam giác ABC.
3) Tính chu vi, diện tích tam giác ABC.
4) Tính số đo góc tạo bởi 2 đường thẳng AB và AC.
5) Viết phương trình đường tròn ngoại tiếp tam giác ABC. Lập phương trình tiếp tuyến của đường tròn tại điểm A.
6) Lập phương trình đường tròn tâm C và tiếp xúc với đường thẳng AB.
Cho tam giác ABC có A 2 ; 3 , B 1 ; − 2 , C 6 ; 2 . Phép tịnh tiến T BC → biến tam giác ABC thành tam giác A′B′C′. Tọa độ trọng tâm tam giác A′B′C′ là
A. − 2 ; − 3
B. 2 ; 3
C. 8 ; 5
D. 3 ; 1
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(-2;4;1), B(1;1;-6), C(0;-2;3). Tìm tọa độ trọng tâm G của tam giác ABC
A. G - 1 3 ; 1 ; - 2 3
B. G - 1 ; 3 ; - 2
C. G 1 3 ; - 1 ; 2 3
D. G - 1 2 ; 5 2 ; - 5 2