Cho tam giác ABC có diện tích =3/2, đỉnh A(2,-3), B(3,2) và trọng tâm G của tam giác ABC thuộc đường thẳng d: 3x-y-8=0. Tìm toạ độ điểm C
Trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC. Hai điểm M 4 ; - 1 , N 0 ; - 5 lần lượt thuộc AB, AC và phương trình đường phân giác trong góc A là x - 3 y + 5 = 0 , trọng tâm của tam giác ABC là G. Tìm toạ độ các đỉnh của tam giác ABC
A. A 1 ; 2 , B - 2 ; 5 , C - 1 ; 12
B. A 1 ; 2 , B - 2 ; 5 , C 0 ; 1
C. A 1 ; 0 , B - 2 ; 5 , C - 1 ; 12
D. A 1 ; 2 , B - 1 ; 5 , C - 1 ; 12
Trong không gian với hệ tọa độ O x y z , cho tam giác ABC có đỉnh C - 2 ; 2 ; 2 và trọng tâm G - 1 ; 2 ; 2 . Tìm tọa độ các đỉnh A, B của tam giác ABC, biết A thuộc mặt phẳng (Oxy) và điểm B thuộc trục cao.
A. A(-1;-1;0), B(0;0;4)
B. A(-1;1;0), B(0;0;4)
C. A(-1;0;1), B(0;0;4)
D. A(-4;4;0), B(0;0;1)
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có tâm đường tròn ngoại tiếp là điểm J(4;0) và phương trình hai đường thẳng lần lượt chứa đường cao và đường trung tuyến từ đỉnh A của tam giác ABC là d 1 : x + y – 2 = 0 và d 2 : x + 2 y - 3 = 0 . Tìm tọa độ điểm C, biết B có tung độ dương.
A. C(3;-3).
B. C(7;1).
C. C(1;1).
D. C(-3;-9).
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 2 1 = y - 2 2 = z + 2 - 1 và mặt phẳng ( α ) :2x+2y-z-4=0. Tam giác ABC có A(-1;2;1), các đỉnh B, C nằm trên (α) và trọng tâm G nằm trên đường thẳng d. Tọa độ trung điểm M của BC là
A. M(2;1;2)
B. M(0;1;-2)
C. M(1;-1;-4)
D. M(2;-1;-2)
Cho mặt phẳng Oxy cho tam giác ABC có A(-1; 2), B(-2; -4), C(1; 2)
1) Viết phương trình tổng quát đường thẳng AC, phương trình tham số đường trung tuyến CM.
2) Tìm tọa độ trọng tâm G, trực tâm H, tâm đường tròn ngoại tiếp I của tam giác ABC.
3) Tính chu vi, diện tích tam giác ABC.
4) Tính số đo góc tạo bởi 2 đường thẳng AB và AC.
5) Viết phương trình đường tròn ngoại tiếp tam giác ABC. Lập phương trình tiếp tuyến của đường tròn tại điểm A.
6) Lập phương trình đường tròn tâm C và tiếp xúc với đường thẳng AB.
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC nội tiếp đường tròn có phương trình x 2 + y 2 – 4 x - 2 y – 8 = 0 . Đỉnh A thuộc tia Oy, đường cao kẻ từ đỉnh C thuộc đường thẳng x + 5y = 0. Tìm tọa độ đỉnh B của tam giác ABC.
A. B (-1;-1)
B. B (0;4)
C. B (5;-1)
D. B (1;9)
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC nội tiếp đường tròn có phương trình x 2 + y 2 – 4 x - 2 y – 8 = 0 . Đỉnh A thuộc tia Oy, đường cao kẻ từ đỉnh C thuộc đường thẳng x + 5y = 0. Tìm tọa độ đỉnh B của tam giác ABC.
A. B (-1;-1)
B. B (0;4)
C. B (5;-1)
D. B (1;9)
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: x-y-3=0 và điểm A(2;6). Trên đường thẳng d lấy hai điểm B và C sao cho tam giác ABC vuông tại A và có diện tích bằng 35 2 2 . Phương trình đường tròn ngoại tiếp tam giác ABC là:
A. hoặc x + 6 2 + y + 3 2 = 25
B. x - 5 2 + y - 2 2 = 25 hoặc x - 6 2 + y - 3 2 = 25
C. x - 5 2 + y - 2 2 = 100 hoặc x - 6 2 + y - 3 2 = 100
D. x + 5 2 + y + 2 2 = 100 hoặc x + 6 2 + y + 3 2 = 100