\(\dfrac{\sqrt{x}+1}{2\sqrt{x}+1}-\dfrac{1}{2}=\dfrac{2\sqrt{x}+2-\left(2\sqrt{x}+1\right)}{2\left(2\sqrt{x}+1\right)}=\dfrac{1}{2\sqrt{x}+1}>0\) do \(2\sqrt{x}+1>0\)
\(\Rightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}+1}>\dfrac{1}{2}\)
\(\dfrac{\sqrt{x}+1}{2\sqrt{x}+1}-\dfrac{1}{2}=\dfrac{2\sqrt{x}+2-\left(2\sqrt{x}+1\right)}{2\left(2\sqrt{x}+1\right)}=\dfrac{1}{2\sqrt{x}+1}>0\) do \(2\sqrt{x}+1>0\)
\(\Rightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}+1}>\dfrac{1}{2}\)
Cho P= \(\dfrac{1-5\sqrt{x}}{\sqrt{x}+1}\)và Q= \((\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{2\sqrt{x}}{\sqrt{x}-2}-\dfrac{3x+4}{x-4}).(\dfrac{\sqrt{x}-2}{2}+1)\)
a) Rút gọn Q
b) Gọi M=P.Q. so sánh M và \(\sqrt{M}\)
\(A=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-4}\) và \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\sqrt{x}-8}{2\sqrt{x}-x}\)
1. Rút gọn B
2. Cho P=A.B. So sánh P với 2
So sánh A với 2 , A=\(\left[\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right]:\dfrac{\sqrt{x}-1}{2}\)
Cho A= \(\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}\)và B= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+3}-\dfrac{9\sqrt{x}-3}{x+\sqrt{x}-6}\)
a) rút gọn B
b) Cho x>0. so sánh A với 3
Cho P= \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\) và Q= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
a) rút gọn P
b) Tính M= P : Q và so sánh M với -1
a, tính GT của đa thức \(f\left(x\right)=\left(x^4-3x+1\right)^{2016}\) tại \(x=9-\dfrac{1}{\sqrt{\dfrac{9}{4}-\sqrt{5}}}+\dfrac{1}{\sqrt{\dfrac{9}{4}+\sqrt{5}}}\)
b, so sánh \(\sqrt{2017^2-1}-\sqrt{2016^2-1}và\dfrac{2.2016}{\sqrt{2017^2-1}-\sqrt{2016^2-1}}\)
c, tính GTBT: \(sinx.cosx+\dfrac{sin^2x}{1+cotx}+\dfrac{cos^2x}{1+tanx}\)
d, biết \(\sqrt{5}\) là số hữu tỉ, hãy tìm các số nguyên a,b tm::
\(\dfrac{2}{a+b\sqrt{5}}-\dfrac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
Cho P= \((\dfrac{1}{1-\sqrt{2}}-\dfrac{1}{\sqrt{x}}):(\dfrac{2x+\sqrt{x}-1}{\sqrt{x}-x\sqrt{x}}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{\sqrt{x}+x^{2}})\)
a) Rút gọn P
b) so sánh P với \(\dfrac{3}{4}\).
c) tìm x để P=1
Cho các biểu thức:
A = \(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\) và B = \(\dfrac{\sqrt{x}}{\sqrt{x}+x}\) với x > 0
a) So sánh B và 1
b) Đặt P = A : B. Tìm các giá trị của x thỏa mãn \(P\sqrt{x}+\left(2\sqrt{x}-1\right)\sqrt{x}=3x-2\sqrt{x-4}+3\)
Cho 2 biểu thức \(P=\sqrt{x}-\dfrac{1}{\sqrt{x}}\) và \(Q=\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\) với x = 0
a) Tính giá trị của biểu thức P khi x = 3
b) Chứng minh rằng \(Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
c) So sánh Q với 1
d) Biết \(S=\dfrac{P}{Q}\) Tính giá trị nhỏ nhất của biểu thức S
so sánh \(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\left(x\ge0;x\ne1\right)\) với `1/3`.