`A=[\sqrt{15}-\sqrt{5}]/[\sqrt{3}-1]=[\sqrt{5}(\sqrt{3}-1)]/[\sqrt{3}-1]=\sqrt{5}`
`B=[a+\sqrt{ab}]/[\sqrt{a}+\sqrt{b}]=[\sqrt{a}(\sqrt{a}+\sqrt{b})]/[\sqrt{a}+\sqrt{b}]=\sqrt{a}`
`C=(1/\sqrt{a-1}+1/[\sqrt{a}\sqrt{a-1}])([a-2\sqrt{a+1}]/[\sqrt{a}+1]`
`C=[\sqrt{a}+1]/[\sqrt{a}\sqrt{a-1}].[a-2\sqrt{a+1}]/[\sqrt{a}+1]`
`C=[a-2\sqrt{a+1}]/[\sqrt{a}\sqrt{a-1}]`
`a, A = (sqrt 5(sqrt 3 - sqrt 1))/(sqrt 3 - 1) = sqrt 5`
`b, B = (a + sqrt (ab))/(sqrt a + sqrt b) = (sqrt a(sqrt a + sqrt b))/(sqrt a +sqrtb)`
`= sqrt a`
`c, C = (sqrt a + 1)/(sqrt a(sqrt a - 1)) . (sqrt a-1)^2/(sqrt a . sqrt (a-1))`
`= (sqrt a + 1)/(a)`.