a) \(M=3\sqrt{3}-\sqrt{12}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(M=3\sqrt{3}-2\sqrt{3}-\left|\sqrt{3}-1\right|\)
\(M=\sqrt{3}-\sqrt{3}+1\)
\(M=1\)
b) Ta có:
\(N=\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(N=\left(\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(N=\left(\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(N=\dfrac{\left(\sqrt{a}+1\right)\cdot\left(\sqrt{a}-1\right)^2}{\sqrt{a}\left(\sqrt{a}-1\right)\cdot\left(\sqrt{a}+1\right)}\)
\(N=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Theo đề ta có: \(M=2N\)
Khi: \(1=2\cdot\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\)
\(\Leftrightarrow1=\dfrac{2\sqrt{a}-2}{\sqrt{a}}\)
\(\Leftrightarrow\sqrt{a}=2\sqrt{a}-2\)
\(\Leftrightarrow2\sqrt{a}-\sqrt{a}=2\)
\(\Leftrightarrow\sqrt{a}=2\)
\(\Leftrightarrow a=4\left(tm\right)\)