\(=\dfrac{3}{2}-1=\dfrac{1}{2}\)
\(=\dfrac{3}{2}-1=\dfrac{1}{2}\)
Tính:
(sin 1 độ + sin 2 độ + ... + sin 89 độ) - (cos 1 độ + cos 2 độ + ... + cos 89 độ)
Rút gọn:
a) \(\left(\frac{1-\tan^2x}{\tan x}\right)^2-\left(1+\tan^2x\right)\left(1+\cot^2x\right)\)
b) \(\left(\sin^4+\cos^4x-1\right)\left(\tan^2x+\cot^2x+2\right)\)
\(\frac{sin^4\alpha}{sin\alpha}-\frac{cos^4\alpha}{cos\alpha}=sin\alpha+cos\alpha\)
rút gọn:
1, 1-sin2α
2, (1+cos α)(1-cos α)
3, 1+sin2α+cos2α
4,sin α-sin α.cos2α
5, sin4α+cos4α+2.sin2α.cos2α
6,tan2α-sin2α.tan2α
7, cos2α+tan2α.cos2α
8, tan2α.(2.cos2α+sin2α-1)
Chứng minh rằng: \(\frac{\sin\alpha}{1+\cot\alpha}+\frac{\cos\alpha}{1+\tan\alpha}=\frac{1}{\sin\alpha+\cos\alpha}\)
*RÚT GỌN CÁC BIỂU THỨC SAU:
a/ (1- cos\(\alpha\)) (1+ cos\(\alpha\))
b/ 1+ sin2\(\alpha\)+ cos\(^2\)\(\alpha\)
c/ sin\(\alpha\)- sin\(\alpha\) cos 2\(\alpha\)
ĐS: A/ sin2\(\alpha\)
b/ 2
c/sin3\(\alpha\)
giúp với, thanks nhiều lắm luôn!!
Tính giá trị biểu thức A = \(\sin x.\cos x+\frac{\sin^2x}{1+\cot x}+\frac{\cos^2x}{1+\tan x}\)
với 0 < x < 90 độ
Cho ΔABC có AB=AC=1 , Góc A = 2α (0o< α <45o), đường cao AD và BE
a) Các tỉ số lượng giác: sinα, cosα, sin2α, cos2a được biểu diễn bởi những đường thẳng nào???
b) CM: ΔADC đồng dạng ΔBEC
c) sin2α= 2sinα . cosα
d) cos2α= 1- 2sin2α
= 2cos2α -1
= cos2α - sin2α
e) tan2α= \(\frac{2\tan\alpha}{1-\tan^2\alpha}\)
tìm α biết: \(\sin\alpha.\cos\alpha=\frac{\sqrt{3}}{4}\)
Cho \(\alpha\) là góc nhọn. Rút gọn biểu thức:
\(A=sin^6\alpha+cos^6\alpha+3sin^2\alpha-cos^2\alpha\)
cảm ơn các bạn trước nhé