\(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{x-4}\)
\(=\dfrac{x-3\sqrt{x}+2+5\sqrt{x}-2}{x-4}\)
\(=\dfrac{x+2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
\(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{x-4}\)
\(=\dfrac{x-3\sqrt{x}+2+5\sqrt{x}-2}{x-4}\)
\(=\dfrac{x+2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
Bài 1: cho biểu thức
P = \(\dfrac{x+3}{\sqrt{x}-2}\) và Q = \(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}\) với x>0, x≠4
a : \(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
b : \(\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x}-4}\right):\dfrac{x+16}{\sqrt{x}+2}\)với x ≥ 0 x ≠ 10
c : \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)với x ≥ 0 x ≠ 9
d : \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)với x ≥ 0 x ≠ 9
a : \(\dfrac{3}{\sqrt{x}-5}+\dfrac{20-2\sqrt{x}}{x-25}\)với x ≥ 0 x ≠ 25
b : \(\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-2}{x-9}\)với x ≥ 0 x ≠ 9
c : \(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}\)với x ≥ 0 x ≠ 4
d : \(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)với ≥ 0 x ≠ 1
Rút gọn
C=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{2+5\sqrt{x}}{x-4}\)(với x≥0 , x ≠4)
1) Rút gọn biểu thức : A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\) + \(\dfrac{2\sqrt{x}}{\sqrt{x}+2}\) + \(\dfrac{2+5\sqrt{x}}{4-x}\) với x≥0 ; x≠4
Rút gọn:
1) \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\) với x >1
2) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\) với x ≠ 4, x ≠16, x >0
Cho biểu thức : \(P=\dfrac{x}{x-4}-\dfrac{1}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\) và \(Q=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\) với x ≥ 0; x ≠ 4; x ≠ 9
a, Tính giá trị biểu thức Q khi x = 64
b, Chứng minh P = \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
c, Cho biểu thức K = Q.(P-1). Tìm số tự nhiên m nhỏ nhất để phương trình K = m + 1 có nghiệm
RG: A = \(\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}\) - \(\dfrac{2\sqrt{x}}{\sqrt{x}-1}\) + \(\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\) ; ĐKXĐ: x ≥ 0
Cho biểu thức:P=(\(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\)).\(\dfrac{\left(1-x\right)^2}{2}\)
a)RG P
b)Tính P khi x =7-\(4\sqrt{3}\)