Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lizy

(P):y=(2m-1)x^2. Tìm `m` để (d):y=2(m+4)x-5m-2 cắt (P) tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) thỏa mãn \(x_1^2+x_2^2=2x_1x_2+16\)

Nguyễn Lê Phước Thịnh
9 tháng 1 2024 lúc 20:39

Phương trình hoành độ giao điểm là:

\(\left(2m-1\right)x^2=2\left(m+4\right)x-5m-2\)

=>\(\left(2m-1\right)x^2-\left(2m+8\right)x+5m+2=0\)

Để (P) cắt (d) tại hai điểm phân biệt thì

\(\left\{{}\begin{matrix}2m-1\ne0\\\text{Δ}>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\\left(2m+8\right)^2-4\left(2m-1\right)\left(5m+2\right)>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\4m^2+32m+64-4\left(10m^2+4m-5m-2\right)>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\4m^2+32m+64-40m^2+4m+8>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\-36m^2+36m+72>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\m^2-m-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\\left(m-2\right)\left(m+1\right)< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\-1< m< 2\end{matrix}\right.\)

Theo vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-2m-8\right)}{2m-1}=\dfrac{2m+8}{2m-1}\\x_1x_2=\dfrac{5m+2}{2m-1}\end{matrix}\right.\)

\(x_1^2+x^2_2=2x_1x_2+16\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2-2x_1x_2=16\)

=>\(\left(x_1+x_2\right)^2-4x_1x_2=16\)

=>\(\left(\dfrac{2m+8}{2m-1}\right)^2-4\cdot\dfrac{5m+2}{2m-1}=16\)

=>\(\dfrac{\left(2m+8\right)^2-4\left(5m+2\right)\left(2m-1\right)}{\left(2m-1\right)^2}=16\)

=>\(\dfrac{4m^2+32m+64-4\left(10m^2-m-2\right)}{\left(2m-1\right)^2}=16\)

=>\(-36m^2+36m+72=16\left(4m^2-4m+1\right)\)

=>\(-36m^2+36m+72=64m^2-64m+16\)

=>\(-100m^2+100m+56=0\)

=>\(\left[{}\begin{matrix}m=\dfrac{7}{5}\left(nhận\right)\\m=-\dfrac{2}{5}\left(nhận\right)\end{matrix}\right.\)


Các câu hỏi tương tự
Hàng Tô Kiều Trang
Xem chi tiết
Lizy
Xem chi tiết
TheUnknown234
Xem chi tiết
Vũ Hoàng
Xem chi tiết
Quang Minh Tống
Xem chi tiết
DanPThinh
Xem chi tiết
Nguyễn Tuấn Vinh
Xem chi tiết
Bùi Lê Hân
Xem chi tiết
Trường Nguyễn Công
Xem chi tiết