a) Ta có: a = 1; b’ = m + 3; c = m 2 + 3
Δ'= b ' 2 - ac = m + 3 2 - ( m 2 + 3) = m 2 + 6m + 9 - m 2 - 3 = 6m + 6
a) Ta có: a = 1; b’ = m + 3; c = m 2 + 3
Δ'= b ' 2 - ac = m + 3 2 - ( m 2 + 3) = m 2 + 6m + 9 - m 2 - 3 = 6m + 6
cho phương trình: x2_(m+1)x-2(m+3)=0
a)tìm m để phương trình có nghiệm là x=2
b)chứng minh phương trình luôn có 2 nghiệm mọi m
Cho phương trình mx2-2(m-1)x+m-4=0
a, Giải phương trình khi m=1
b, Tìm m để phương trình có 2 nghiệm x1;x2 và x1+2x2=3
Cho pt (m+3)\(x^2\)+(m-1)x+(m-1)(m+4)=0
a)Định m để phương trình có 2 nghiệm trái dấu
b) Định m để phương trình có ít nhất 1 nghiệm âm
Phần tự luận
Nội dung câu hỏi 1
Cho hệ phương trình : x + a y = 3 a x - y = 2
a) Giải hệ phương trình khi a = 2
1) Giải hệ phương trình:
\(\dfrac{1}{x-2}+\dfrac{1}{y-1}=2\)
\(\dfrac{2}{x-2}-\dfrac{3}{y-1}=1\)
2) Cho phương trình: \(^{x^2}\)– 2(m + 1)x + 4m = 0
a,Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\)
b. Tìm m để hai nghiệm x1, x2 thỏa mãn \(\left(x_1-x_2\right)^2-x_1.x_2=3\)
Giaỉ chi tiết giúp mình 1 chút ạ. Mình cảm ơn
Bài 1: Giải hệ phương trình sau
\(\left\{{}\begin{matrix}\dfrac{1}{2x-y}+\left(x+3y\right)=\dfrac{3}{2}\\\dfrac{4}{2x-y}-5\left(x+3y\right)=-2\end{matrix}\right.\)
Bài 2: Cho phương trình: x\(^2\)+(m-1)x-m\(^2\)-2=0
a) CMR: phương trình luôn có 2 nghiệm phân biệt \(\forall\)m
b) Tìm m để biểu thức A=\(\left(\dfrac{x_1}{x_2}\right)^3+\left(\dfrac{x_2}{x_1}\right)^3\) đạt giá trị lớn nhất.
Cho phương trình (ẩn x) x2 – 2(m – 1)x + m2 = 0.
Tính Δ'.
Cho phương trình x2 - 2(m+1)x + m2 +m-1 =0
a) Trong trường hợp phương trình có nghiệm x1, x2 hãy tính
theo m
1/x12 + 1/x22