Viet: `x_1+x_2=2m+2`
`x_1x_2=m^2+m-1`
Có: `1/(x_1^2)+1/(x_2^2)`
`=(x_1^2+x_2^2)/(x_1^2 x_2^2)`
`=( (x_1+x_2)^2-2x_1x_2)/(x_1^2 x_2^2)`
`=((2m+2)^2-2(m^2+m-1))/((m^2+m-1)^2)`
`=(2m^2+6m+6)/(m^4+2m^3−m^2−2m+1)`
- Xét: \(\Delta\)'= [-(m-1)\(^2\)]-(m\(^2\)+m-1)=m\(^2\)-2m+1-m\(^2\)-m+1=-3m+2
- Để pt có nghiệm
<=> \(\Delta\)' \(\ge\) 0
<=> m\(\le\)\(\dfrac{2}{3}\)
- Theo Viete: x1+x2=2m+2 ; x1.x2=m\(^2\)+m+1
- Có \(\dfrac{1}{x1^2}+\dfrac{1}{x2^2}=\dfrac{x1^2+x2^2}{\left(x1.x2\right)^2}=\dfrac{\left(x1+x2\right)^2-2x1.x2}{\left(x1.x2\right)^2}\)
theo Viete (bạn tự thay vào nhé)