1: =(a+3b+3b)(a+3b-3b)
=a(a+6b)
2: =(2a-a-b)(2a+a+b)=(a-b)(3a+b)
3: =(x+1)3
`1)(a+3b)^2-9b^2=(a+3b-3b)(a+3b+3b)=a(a+6b)`
`2)4a^2-(a+b)^2=(2a-a-b)(2a+a+b)=(a-b)(3a+b)`
`3)x^3+3x^2+3x+1=(x+1)^3`
\(1.\left(a+3b\right)^2-9b^2=\left(a+3b+9b\right)\left(a+3b-9b\right)=\left(a+12b\right)\left(a-6b\right)\)
\(2.4a^2-\left(a+b\right)^2=\left(2a+a+b\right)\left(2a-a-b\right)=\left(3a+b\right)\left(a-b\right)\)
\(3.x^3+3x^2+3x+1\)
\(=x^3+1+3x^2+3x\)
\(=\left(x+1\right)\left(x^2-x+1\right)+3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1+3x\right)=\left(x+1\right)\left(x^2+2x+1\right)\)
\(=\left(x+1\right)^3\)
1.
\(\left(a+3b\right)^2-9b^2\)
\(=\left(a+3b\right)^2-\left(3b\right)^2\)
\(=\left(a+3b\right).\left(a-3b\right)\)
\(=a\left(a+6\right)\)
2.
\(4a^2-\left(a+b\right)^2\)
\(=\left(2a\right)^2-\left(a+b\right)^2\)
\(=\left(2a-a+b\right).\left(2a+a+b\right)\)
\(=\left(a-b\right).\left(3a+b\right)\)
3.
\(x^3+3x^2+3x+1\)
\(=x^3+3.x^2.1+3.x.1^2+1^3\)
\(=\left(x+1\right)^3\)