a: Xét ΔOKA vuông tại K và ΔOHB vuông tại H có
OA=OB
góc O chung
=>ΔOKA=ΔOHB
b: góc OAK+góc CAB=góc OAB
góc OBH+góc CBA=góc OBA
mà góc OAK=góc OBH và góc OAB=góc OBA
nên góc CAB=góc CBA
=>ΔCAB cân tại C
c: Xét ΔOAB có OH/OA=OK/OB
nên HK//AB
a: Xét ΔOKA vuông tại K và ΔOHB vuông tại H có
OA=OB
góc O chung
=>ΔOKA=ΔOHB
b: góc OAK+góc CAB=góc OAB
góc OBH+góc CBA=góc OBA
mà góc OAK=góc OBH và góc OAB=góc OBA
nên góc CAB=góc CBA
=>ΔCAB cân tại C
c: Xét ΔOAB có OH/OA=OK/OB
nên HK//AB
Cho tam giác ABC cân tại A . Kẻ BH ⊥ AC; CK ⊥ AB ( H ∈ AC; K ∈ AB ) a) Chứng minh tam giác AKH là tam giác cân. b) Gọi I là giao điểm của BH và CK; AI cắt BC tại M.Chứng minh rằng IM là phân giác của góc BIC. c) Chứng minh HK // BC
Cho tam giác .ABC cân tại A. Kẻ BH | AC; CK perp AB ( H in AC ; K in AB ). a) Chứng minh tam giác AKH là tam giác cản b) Gọi I là giao của BH và CK; A cắt BC tại M. Chứng minh rằng IM là phân giác của hat BIC c) Chứng minh. HK //BC
Cho tam giác cân ABC tại A. Vẽ BH vuông góc với AC tại H và CK vuông góc với AB tại K.
1) Chứng minh tam giác ABH= tam giác ACK
2) Gọi O là giao điểm của BH và CK. Chứng minh OB=OC
3) Chứng minh HK//BC
4) Trên tia đối của CA lấy E sao cho CE=CH. Gọi I là giao điểm của EK và BC. Chứng minh I là trung điểm của EK.
( Mình đang cần gấp, b nào biết giải giúp mình với, mình cảm ơn nhiều ạ :33)
Bài 8 :
Cho ΔABC cân tại A có M là trung điểm của BC
a) Vẽ hình
b) Chứng minh rằng : AM là đường trung trực của ΔABC
c) Kẻ BH vuông góc với AC (H thuộc AC), CK vuông góc với AB (K thuộc AB). Chứng minh rằng : BH = CK
d) Chứng minh rằng : HK//BC
e) Gọi O là giao điểm của BH và CK
Chứng minh rằng : ba điểm AOM thẳng hàng
CHO TAM GIÁC NHỌN ABC CÂN TẠI A VẼ BH VUÔNG GÓC VỚI AC (H Thuộc AC) CK vuông góc với AB ( K thuộc AB )
A/ Chứng minh rằng AH=AK
B/ Gọi I LÀ GIAO ĐIỂM CỦA BH VÀ CK. Chứng minh tam giác BIC cân
C/Chứng minh rằng AI là phân giác của góc A
Cho tam giác ABC cân tại A .Kẻ BH vuông góc với AC; CK vuông góc với AB (H thuộc AC; K thuộc AB) a)Chứng minh tam giác AKH là tam giác cân b)Gọi I là giao của BH và CK;AI cắt BC tại M.Chứng minh rằng IM là phân giác của góc BIC c)Chứng minh :HK // BC
cho tam giác ABC cân tại A [góc A nhỏ hơn 90 độ ].Kẻ BD vuông góc AC [D thuộc AC ],CE vuông góc AB [E thuộc AB ],BD và CE cắt nhau tại H.
a] chứng minh tam giác ABD = tam giác ACE
b] Chứng minh tam giác BHC cân
c] chứng minh ED song song BC
d] AH cắt BC tại K, trên tia HK lấy điểm M sao cho K là trung điểm của HM. Chứng minh tam giác ACM vuông
Cho tam giác ABC cân tại A có AB=AC=10cm, BC=12cm, kẽ AH vuông góc BC
a) Chứng minh HB=HC,tính AH
b) Kẽ Bx vuông góc với AB tại B , kẽ Cy vuông góc với AC tại C , Bx cắt Cy tại M .Chứng minh AM là phân giác của góc BAC, suy ra A, H, M thẳng hàng .
c) Kẽ HK song song MB ( K thuộc MC) , trên HM lấy O sao cho OM =2OH . Chứng minh B,O, K thẳng hàng .
Cho ΔABC cân tại A, biết AB = 5cm, BC = 6cm. Gọi H là trung điểm của BC.
a) Chứng minh: ΔABH = ΔACH
b) Chứng minh: AH ⊥ BC
c) Tính AH
d) Kẻ HE ⊥ AB (E ∈ AB), HK ⊥ AC (K ∈ AC). Chứng minh: HE = HK
e) Chứng minh: EK // BC
Ai giúp mik vs !!