\(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\) (ĐK: \(x>0,x\ne1\))
\(=\left[\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\left[\dfrac{2}{x}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right]\)
\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\left[\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right]\)
\(=\dfrac{x+\sqrt{x}+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2-2+x}{x\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x\left(\sqrt{x}+1\right)}{2\sqrt{x}+x}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x}{\sqrt{x}-1}\)
______________
\(M=-\dfrac{1}{2}\) khi
\(\dfrac{x}{\sqrt{x}-1}=\dfrac{-1}{2}\)
\(\Leftrightarrow2x=-\sqrt{x}+1\)
\(\Leftrightarrow2x+\sqrt{x}-1=0\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x}=1\\\sqrt{x}=-1\text{(vô lý)}\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\)
\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\)
rút gọn M
tìm x để M = \(\dfrac{-1}{2}\)