\(=x^2-4x+4+16-4x\)
\(=x^2-4x-4x+4+16\)
\(=x^2-8x+20\)
(x - 2)² + 4(4 - x)
= x² - 4x + 4 + 16 - 4x
= x² - 8x + 20
\(\left(x-2\right)^2+4\left(4-x\right)\)
\(=x^2-4x+4+16-4x\)
\(=x^2-8x+20\)
\(=x^2-8x+4^2+4\)
\(=\left(x-4\right)^2+4\)
\(=x^2-4x+4+16-4x\)
\(=x^2-4x-4x+4+16\)
\(=x^2-8x+20\)
(x - 2)² + 4(4 - x)
= x² - 4x + 4 + 16 - 4x
= x² - 8x + 20
\(\left(x-2\right)^2+4\left(4-x\right)\)
\(=x^2-4x+4+16-4x\)
\(=x^2-8x+20\)
\(=x^2-8x+4^2+4\)
\(=\left(x-4\right)^2+4\)
a) \(^{ }\left(7x+4\right)^2-\left(7x-4\right)\left(7x+4\right)\)
b) \(^{ }8\left(x-2\right)-3\left(x^2-4x-5\right)-5x^2\)
c) \(^{^{ }}\left(x+1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(x+1\right)\)
Chứng minh rằng biểu thức sau không phụ thuộc vào biến x:
a/A= \(\left(x+4\right)\left(x-4\right)-2x\left(3+x\right)+\left(x+3\right)^2\)
b/B=\(\left(x^2+4\right)\left(x+2\right)\left(x-2\right)-\left(x^2+3\right)\left(x^2-3\right)\)
Giải các bất phương trình sau :
\(a.4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)
\(b.\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)
c. \(\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)
Rút gọn :
a ) \(\left(x+3\right)^2-\left(x-2\right).\left(x+2\right)\)
b ) \(\left(3x-4\right)^2-\left(x-4\right).\left(x+4\right)-8x^2\)
c ) \(\left(x-2\right).\left(x+2\right)+\left(x-3\right).\left(x+3\right)-x\left(2x+1\right)-4\)
Rút gọn các biểu thức sau:
a/\(\left(3x-1\right)^2-2\left(2-5x\right)^2-2\left(x^2+x-1\right)\left(x-1\right)\)
b/\(\left(3a-1\right)^2+2\left(9a^2-1\right)+\left(3a-1^{ }\right)^2\)
c/\(\left(3x-4^{ }\right)^2+\left(4-x\right)^2-2\left(3x-4\right)\left(x-4\right)\)
1) \(\left(3-x^2\right)+6-2x=0\)
2) \(5\left(2x-1\right)+7=4\left(2-x\right)+2\)
3) \(x^2-6x+4\left(x-6\right)=0\)
4) \(\left(x+1\right)\left(2x-3\right)=x\left(x+1\right)\)
a) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)
b)\(\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)
c) A= \(2\left(x^4+y^4+z^4\right)-\left(x^2+y^2+z^2\right)^2-2\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(x+y+z\right)^4\)
Bài Tập: Giải phương trình :
a) (x + 5)(2x - 3) = 0
b) \(\left(x^2-9\right)\left(4-x\right)=0\)
c) \(\left(2x+3\right)\left(4-5x\right)=0\)
d) \(2\left(x+3\right)\left(x-4\right)=0\)
e) \(\left(x^2-9\right)\left(4-x\right)=0\)
f) \(\left(2x+3\right)\left(x^2-16\right)=0\)
Giải phương trình:
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{^{x^2}}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
\(\frac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\frac{19}{49}\)
Tìm x biết \(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+4\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)