Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn minh hà

\(\left(\sqrt{x}+\frac{y-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\left(\right)\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\left(\right)\)

rút gọn       tính khi x=3, y=\(4+2\sqrt{3}\)

CẦN GẤP

Nguyễn Lê Phước Thịnh
1 tháng 2 2022 lúc 13:19

\(=\dfrac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left(\dfrac{x}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}-\dfrac{y}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}-\dfrac{x+y}{\sqrt{xy}}\right)\)

\(=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}:\dfrac{x\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)-y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)-\left(x^2-y^2\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\)

\(=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{x^2-x\sqrt{xy}-y\sqrt{xy}-y^2-x^2+y^2}\)

\(=\dfrac{\sqrt{xy}\left(x+y\right)\cdot\left(\sqrt{x}-\sqrt{y}\right)}{-\sqrt{xy}\left(x+y\right)}=-\sqrt{x}+\sqrt{y}\)(1)

Khi x=3 và \(y=4+2\sqrt{3}\) vào (1), ta được:

\(=-\sqrt{3}+\sqrt{4+2\sqrt{3}}=-\sqrt{3}+\sqrt{3}+1=1\)


Các câu hỏi tương tự
wary reus
Xem chi tiết
Nguyễn Anh Khoa
Xem chi tiết
Phuong Nguyen Minh
Xem chi tiết
Ngô Hồng Thuận
Xem chi tiết
wary reus
Xem chi tiết
cha gong-won
Xem chi tiết
Linh Chi
Xem chi tiết
phạm thị hồng anh
Xem chi tiết
Trịnh Hà My
Xem chi tiết