Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lizy

\(\left\{{}\begin{matrix}x-2y=4-m\\2x+y=8m+3\end{matrix}\right.\)

a. giải và biện luận

b. tìm m để hệ có nghiệm (x,y) thỏa mãn `x^2 +y^2` đạt Min

a: Vì \(\dfrac{1}{2}\ne\dfrac{-2}{1}=-2\)

nên hệ phương trình luôn có nghiệm duy nhất

b: \(\left\{{}\begin{matrix}x-2y=4-m\\2x+y=8m+3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-2y=4-m\\4x+2y=16m+6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+4x=4-m+16m+6=15m+10\\2x+y=8m+3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5x=15m+10\\y=8m+3-2x\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=3m+2\\y=8m+3-6m-4=2m-1\end{matrix}\right.\)

Đặt \(A=x^2+y^2\)

\(=\left(3m+2\right)^2+\left(2m-1\right)^2\)

\(=9m^2+12m+4+4m^2-4m+1\)

\(=13m^2+8m+5\)

\(=13\left(m^2+\dfrac{8}{13}m+\dfrac{5}{13}\right)\)

\(=13\left(m^2+2\cdot m\cdot\dfrac{4}{13}+\dfrac{16}{169}+\dfrac{49}{169}\right)\)

\(=13\left(m+\dfrac{4}{13}\right)^2+\dfrac{49}{13}>=\dfrac{49}{13}\forall m\)

Dấu '=' xảy ra khi \(m+\dfrac{4}{13}=0\)

=>\(m=-\dfrac{4}{13}\)


Các câu hỏi tương tự
Lizy
Xem chi tiết
Lizy
Xem chi tiết
Lizy
Xem chi tiết
Lizy
Xem chi tiết
Vũ Thanh Lương
Xem chi tiết
Lizy
Xem chi tiết
Trần Mun
Xem chi tiết
Lizy
Xem chi tiết
Lizy
Xem chi tiết