a: Vì \(\dfrac{1}{2}\ne\dfrac{-2}{1}=-2\)
nên hệ phương trình luôn có nghiệm duy nhất
b: \(\left\{{}\begin{matrix}x-2y=4-m\\2x+y=8m+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-2y=4-m\\4x+2y=16m+6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+4x=4-m+16m+6=15m+10\\2x+y=8m+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x=15m+10\\y=8m+3-2x\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=3m+2\\y=8m+3-6m-4=2m-1\end{matrix}\right.\)
Đặt \(A=x^2+y^2\)
\(=\left(3m+2\right)^2+\left(2m-1\right)^2\)
\(=9m^2+12m+4+4m^2-4m+1\)
\(=13m^2+8m+5\)
\(=13\left(m^2+\dfrac{8}{13}m+\dfrac{5}{13}\right)\)
\(=13\left(m^2+2\cdot m\cdot\dfrac{4}{13}+\dfrac{16}{169}+\dfrac{49}{169}\right)\)
\(=13\left(m+\dfrac{4}{13}\right)^2+\dfrac{49}{13}>=\dfrac{49}{13}\forall m\)
Dấu '=' xảy ra khi \(m+\dfrac{4}{13}=0\)
=>\(m=-\dfrac{4}{13}\)