\(\left\{{}\begin{matrix}4x^2-5\left(y+1\right)=\left(2x+3\right)^2\\3\left(7x+2\right)=5\left(2y-1\right)-37\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x^2-5y-5=4x^2+12x+9\\21x+6=10y-5-37\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x^2+12x+9-4x^2+5y+5=0\\21x+6-10y+42=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}12x+5y=-14\\21x-10y=-48\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}84x+35y=-98\\84x-40y=-192\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}75y=94\\12x+5y=-14\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{94}{75}\\12x=-14-5y=-\dfrac{304}{15}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{94}{75}\\x=-\dfrac{76}{45}\end{matrix}\right.\)