Đáp án A
Khối chóp đã cho có 3 mặt phẳng đối xứng
Đáp án A
Khối chóp đã cho có 3 mặt phẳng đối xứng
Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa cạnh bên và mặt phẳng đáy bằng 60 ° Gọi M là điểm đối xứng vưới C qua D và N là trung điểm của cạnh SC. Mặt phẳng (BMN) chia khối chóp S.ABCD thành hai khối đa diện H 1 và H 2 trong đó H 1 chứa điểm C. Thể tích của khối là
A. 7 6 a 3 72
B. 5 6 a 3 72
C. 5 6 a 3 36
D. 7 6 a 3 36
Cho khối chóp tứ giác đều S.ABCD có dạng đáy bằng a, góc giữa cạnh bên và mặt phẳng đáy bằng 60 ° . Gọi M là điểm đối xứng với C qua D và N là trung điểm của cạnh SC. Mặt phẳng (BMN) chia khối chóp S.ABCD thành hai khối đa diện H 1 và H 2 , trong đó H 1 chứa điểm C. Thể tích của khối H 1 là:
A. 7 6 a 3 72
B. 5 6 a 3 72
C. 5 6 a 3 36
D. 7 6 a 3 36
Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp đáy một góc 60 ∘ . Gọi M là điểm đối xứng với C qua D, N là trung điểm SC. Mặt phẳng (BMN) chia khối chóp S.ABCD thành hai khối đa diện. Tính thể tích V
A. V = 7 6 a 3 36
B. V = 7 6 a 3 72
C. V = 5 6 a 3 72
D. V = 5 6 a 3 36
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 1, góc giữa cạnh bên và mặt đáy bằng 60 ∘ Gọi A ' , B ' , C ' lần lượt là các điểm đối xứng của A,B,C qua S. Thể tích của khối đa diện A B C A ' B ' C ' bằng
A. V = 2 3 3
B. V = 2 3
C. V = 4 3 3
D. V = 3 2
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 1, góc giữa cạnh bên và mặt đáy bằng 60 0 . Gọi A',B',C' lần lượt là các điểm đối xứng của A,B,C qua S. Thể tích của khối đa diện ABCA'B'C' bằng
A. V = 2 3 3
B. V = 2 3
C. V = 4 3 3
D. V = 3 3
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 3a. Gọi φ là góc giữa cạnh bên và mặt phẳng đáy. Tính tan φ .
A. tan φ = 3 2
B. tan φ = 2 3
C. tan φ = 2 3 3
D. tan φ = 2
Hình chóp tam giác đều S . A B C có cạnh đáy bằng 3 a , cạnh bên bằng 3 a . Tính khoảng cách h từ đỉnh S tới mặt phẳng đáy A B C .
A. h = a
h = a 6 B.
C. h = 3 2 a
D. h = a 3
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 60 ° . Gọi M là điểm đối xứng với C qua D; N là trung điểm của SC, mặt phẳng ( BMN) chia khối chóp S.ABCD thành hai phân. Tính tỉ số thể tích giữa hai phần đó
A. 1 5
B. 7 3 .
C. 1 7
D. 7 5
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên SA= 3 a vuông góc với mặt đáy. Côsin góc giữa hai mặt phẳng (SBC) và (ABC) bằng
A. 5 5
B. 2 5 5
C. 6 3
D. 3 3